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Introduction

• Networks (= graphs) are everywhere.

(a) Social
xxx.network

(b) Traffic
xxxxnetwork

(c) xBrain
xxxxnetwork

(d) Material
xxxx.network

(e) Robotic
xxxxnetwork

• Networks ≈ matrices.

• Network’s spectrum—eigenvalues-eigenvectors of the network’s “matrix”.

• Network’s matrices’ spectra reveal lots of information about the network.

• This talk’s focus—applications to walk analysis and spectral clustering.
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Graphs – Standard Notation
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Graphs – Standard Notation

• Graph G = 〈V,E,w〉, with |V | = n nodes, and |E| = m edges.

• Adjacency matrix A:

Aij =

{
w(〈i, j〉) = wij if 〈i, j〉 ∈ E,
0 otherwise.

• In-degree din
i of node vi is the sum of the weights on all of its incoming

edges (similarly, out-degree).

• Degree matrix: D = diag({di}1...n) (similarly, in- and out-degree).

• Laplacian: L = D −A.

• Random-walk Laplacian: L rw = I −D −1A.
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Spectral Graph Theory

Spectral Graph Theory

Graphs are usually represented with matrices. Spectral graph theory attempts
to connect spectral properties of these matrices with the corresponding graphs’
structural properties.

Limitations
Most spectral graph theory’s results are obtained for undirected graphs.
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Spectrum of Adjacency Matrix – Walks in Graphs (I)

• A ∈ {0, 1}n×n – adjacency matrix of an undirected unweighted graph G.

• Aij – number of walks of length 1 in G between nodes vi and vj .

• (A k)ij – number of walks of length k in G between nodes vi and vj .

• (A k1)i – number of walks of length k ending at vi.

• 1TA k1 – number of walks of length k in G.
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Spectrum of Adjacency Matrix – Walks in Graphs (II)

• Connection to the largest eigenvalue µmax of the adjacency matrix A of
an undirected, unweighted, connected graph:

1
TA k

1 = (since A is real and symmetric) = 1
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• Thus, 1TA k1 ∼ µk
max, is, roughly, the number of walks of length k in G.

7 / 18



Spectrum of Adjacency Matrix – Beyond Walks

More results ((†) – applies to weighted graphs):

• (†) If graph G is connected, µmax has multiplicity 1, and its eigenvector is
positive (Perron-Frobenius).

• (†) davg ≤ µmax ≤ dmax (davg, dmax – mean, max degrees).

• max {davg,
√
dmax} ≤ µmax ≤ dmax.

• (†) If G is connected, and µmax = dmax, then ∀i : di = dmax.

• (†) A connected graph is bipartite iff µmin = −µmax.

• χ(G) ≥ 1 + µmin/µmax.
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Spectral Graph Theory for Clustering

• Clustering goal: partition a network into k clusters so that the nodes
being “close to each other” end up inside the clusters, and the nodes that
are “far apart” belong to different clusters.

• Select basic methods: k-means, k-medoids, density-based clustering.

• Our method: cluster nodes based on the partial spectrum of Laplacian.

9 / 18



Spectral Bisection – Theory

• Goal: cut an undirected graph with G(A) into S ⊂ V and sS = V \ S.

• cut(S, sS) =
∑

i∈S,j∈ sS Aij .

• ratio-cut(S, sS) = cut(S, sS)

|S|| sS| .

• xTLx =
∑

ij Aij(xi − xj)2/2, where L = D −A.

• Assume signed cluster indicator: xi = 1 if i ∈ S; and xi = −1 otherwise.

• ratio-cut(S, sS)→ min ∼ xTLx→ min, with x ⊥ 1 – NP-hard.

• Relax xi to be real ⇒ x ∗ = q2 – Fiedler vector.

• Thus, q2 > 0 – cluster indicator.

• If L rw = D−1L is used instead of L, then we look for edge-balanced cut.
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Spectral Bisection – Practice

• Spectral bisection (splitting Fiedler vector around 0):

(Networks from meshpart Matlab toolbox by John R. Gilbert and Shang-Hua Teng.)

11 / 18

http://www.cerfacs.fr/algor/Softs/MESHPART/
http://cs.ucsb.edu/~gilbert/
http://www-bcf.usc.edu/~shanghua/


Spectral Bisection – Practice

• Spectral bisection (splitting Fiedler vector around 0):

• Enforcing strict node-balance (splitting Fiedler vector around median):
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Spectral Bisection vs. K-Means

• Spectral bisection:

• K-Means:
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Spectral Bisection vs. HDBSCAN

• Spectral bisection:

• HDBSCAN:
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Spectral Clustering via Spectral Bisection?

• Why not to use spectral bisection hierarchically, to partition a graph into
an arbitrary number of clusters?
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Spectral Clustering via Spectral Bisection?

• Why not to use spectral bisection hierarchically, to partition a graph into
an arbitrary number of clusters?

• Will see how it compares to “proper spectral clustering” in what follows.
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Spectral Clustering – Theory

Conceptually similar to spectral bisection, with a few differences.

• Performing a k-way instead of a 2-way cut.

• Instead of using only q2, using (k − 1) smallest eigenvectors Q∗,2:k.

• Q∗,2:k – discriminative (k − 1)-dimensional embedding of the graph.

• Cluster map obtained via “splitting” rows of Q∗,1:k.
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Spectral Clustering – Practice

• Spectral clustering (4 clusters, combinatorial Laplacian L = D −A):
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Spectral Clustering – Practice

• Spectral clustering (4 clusters, combinatorial Laplacian L = D −A):

• Hierarchical spectral bisection:
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Spectral Clustering – Practice

• Spectral clustering (6 clusters, combinatorial Laplacian L = D −A):

• Spectral clustering (6 clusters, random-walk Laplacian Lrw = I −D−1A):
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Summary

• Spectrum of a graph provides plenty of information about the graph.

• Spectral bisection is superior to k-means-like and density-based clustering1.

• Hierarchical spectral bisection is hard to use for multi-way cutting.

• Spectral clustering is effective at discovering clusters of complex shape.

• L for node-balanced (ratio) cut; Lrw for edge-balanced (normalized) cut.

• Spectral clustering is relatively cheap for sparse networks.

1When we need “connectivity-based” rather than “geometric” clustering.
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∼ Thanks ∼
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