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Vectors and Matrices

Notation

I x ∈ C – scalar (often, R is good enough)

I v ∈ Cn – n-dimensional (column-)vector

I A ∈ Cn×m – matrix with n rows and m columns

I Aij = Ai,j – element of A in i’th row and j’th column

I AT – transpose of A (AT
ij = Aji)

I AH – Hermitian transpose of A (AH
ij = sAji)

1

Examples

A =

[
1 2 3
4 5 6

]
∈ R2×3 AT =

 1 4
2 5
3 6

 ∈ R3×2

1a+ i · b = a− i · b ∈ C
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Block Matrices

A =


m1 ... mp

n1 A11 . . . A1p

...
...

. . .
...

nq Aq1 . . . Aqp


Definition
Block matrix – a “matrix of matrices”. Aij – block at i’th row and j’th
column of partitioned matrix A. Blocks of the same row (column) have the
same number of rows (columns).
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Matrix Arithmetic (1)

Multiplication by scalar

Performed elementwise: α ·An×m = {α ·Aij}n×m

Addition
Performed elementwise: An×m + Bn×m = {Aij +Bij}n×m

Examples

2 ·
[

1 2 3
4 5 6

]
+

[
−2 0 −1
2 5 8

]
=

[
0 4 5
10 15 20

]
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Matrix Arithmetic (2)

Multiplication

An×mBm×k = Cn×k

[ ]1×0[ ]0×1 = [0]1×1

[a]1×1[b]1×1 = [a · b]1×1 (a, b ∈ C)[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]
=

[
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

]

Corollary

An×mBm×k =

{
m∑
`=1

Ai`B`j

}
n×k
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Matrix Arithmetic (2) – Examples

I Example 1 (matrix-matrix (MM) multiplication):

[
1 2 3
4 5 6

] 0 1
−1 3
5 2

 =

[
13 13
25 31

]
I Example 2 (matrix-vector (MV) multiplication):

[
1 2 3
4 5 6

] 1
3
2

 =

[
13
31

]
I Example 3 (MV block multiplication):

[
1 2 3
4 5 6

]
1×3

 1

3

2


3×1

=

[ [
1
4

]
· [1] +

[
2
5

]
· [3] +

[
3
6

]
· [2]

]
1×1
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Matrix Arithmetic (2) – More Examples

I Example 4 (MV block multiplication):

[
1 2 3
4 5 6

]
1×1

 0 1
−1 3
5 2


1×2

=


p p[

1 2 3
4 5 6

] 0
−1
5

 [
1 2 3
4 5 6

] 1
3
2


p p


1×2

=

[ [
13
25

] [
13
31

] ]

I Example 5 (row scaling2): d1 . . . 0
...

. . .
...

0 . . . dn


n×n

 −A1−
...

−An−


n×n

=

 −d1A1−
...

−dnAn−


n×n

I Example 6 (permutation of rows3):3 0 0 1
1 1 0 0
2 0 1 0

 −A1−
−A2−
−A3−


3×m

=

 −A3−
−A1−
−A2−


3×m

2For column scaling, apply diagonal matrix from the right.
3For permutation of columns, apply PT from the right.
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Inversion

Left Inverse
A−L is a left inverse of A if A−LA = I, where I is the identity matrix
(Iii = 1, Iij = 0 if i 6= j).

Right Inverse

A−R is a right inverse of A if AA−R = I.

Inverse
A−1 is the inverse of A if A−1 = A−L = A−R. If inverse exists, it is
unique; if it does not, then the (Moore-Penrose) pseudoinverse is the closest
substitute.
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Inversion – Examples (matrix inversion.m)

I Left Inverse (no right inverse for skinny matrices): 1 4
2 5
3 6

−L ≈ [ −0.94 −0.11 0.72
0.44 0.11 −0.22

]
I Right Inverse (no left inverse for fat matrices):

[
1 2 3
4 5 6

]−R
≈

 −0.94 0.44
−0.11 0.11
0.72 −0.22


I Inverse (may exist only for square matrices): 1 2 3

2 3 1
3 1 2

−1

≈

 −0.28 0.06 0.39
0.06 0.39 −0.28
0.39 −0.28 0.06
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Linear Systems

I Here, “a linear system” = “a system of linear algebraic equations”.

I Solving Ax = b w.r.t. x ∈ Rn is one of two fundamental problems of
linear algebra (the other one is eigenproblem).

I Unique solution exists iff A is non-singular (det(A) 6= 0).

I Problem is related to matrix inversion (i.e., x = A−1b).

I A system with singular A either has no or infinitely many solutions.
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LU Factorization

I The method to directly solve linear systems – (a kind of) Gaussian
elimination.

I Bad ideas: Cramer’s rule; inversion followed by multiplication.

I One kind of Gaussian elimination – LU factorization / decomposition
(a.k.a. Gaussian elimination with partial pivoting).

Theorem (LU factorization)

For any n-by-m matrix A, there exist a permutation matrix P such that
PA = LU , where L is lower-triangular with units on the main diagonal and U
is a block-matrix of the form

U =

[ r (m−r)

r U11 U12

(n−r) 0 0

]
where U11 is upper-triangular with non-zero diagonal entries. Integer r is the
rank of A.
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Solving Linear Systems with LU (linear systems.m)

I Problem: solve Ax = b w.r.t. x ∈ Rn×1.

I Step 1: decompose A = P −1LU (O(n3)).

I Step 2: (P −1LU)x = b ⇐⇒ (LU)x = b′, where b′ = Pb (O(n)).

I Step 3: solve Ly = b′ w.r.t. y using forward substitution (O(n2)).

I Step 4: solve Ux = y w.r.t. x using back substitution (O(n2)).
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Vector Space

A vector space consists of a set (a field) of scalars F (often, C or R), a set of
vectors V (sequences, matrices, functions, . . . ) and a pair of operations, vector
addition + : V × V → V and scalar multiplication × : F× V → V, such that
∀α, β ∈ F ∀x,y,z ∈ V:

I x + y = y + x (commutativity of addition),

I x + (y + z) = (x + y) + z (associativity of addition),

I ∃0 ∈ V : x + 0 = x (existence of additive identity),

I ∃−x ∈ V : x + (−x) = 0 (existence of additive inverse),

I α(βx) = (αβ)x (multiplicative associativity),

I 1x = x (unit scaling),

I α(x + y) = αx + αy (distributivity),

I (α+ β)x = αx + βx (distributivity).

(Notation abuse: instead of 〈V,F,+,×〉, we usually refer to a vector space
simply as V or V over 〈•, •〉 when we want to emphasize how the operations +
and × are defined.)

A subset W of V is a subspace of V if W is a vector space on its own.
Alternatively, W is a subspace iff it is closed under 〈+,×〉.
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Linear Independence

I Linear combination: a1x1 + · · ·+ anxn (where ai ∈ F, xj ∈ V) – linear
combination of vectors {x1, . . . ,xn} with coefficients {a1, . . . , an}.

I Important observation:

a1x1 + · · ·+ anxn =
[
x1 . . . xn

]  a1

...
an


If we think about xi not as abstract elements of V, but as
(column-)vectors, it becomes clear that the result of a matrix-vector
multiplication is a linear combination of the matrix’ columns.

I span(x1, . . . ,xn) = {a1x1 + · · ·+ anxn|ai ∈ F} – a span of a set of
vectors is the set of all their possible linear combinations.

I {x1, . . . ,xn} are linearly independent if a1x1 + · · ·+ anxn = 0 iff[
a1 . . . an

]
= 0.

I A set {x1, . . . ,xn} of linearly independent vectors is a basis of subspace
W if W = span(x1, . . . ,xn). W’s dimension dimW is n.
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Fundamental Subspaces of a Matrix

I The nullspace (kernel) of An×m is

N (A) = {x | Ax = 0}.

I The range (column space, image) of An×m is

R(A) = colspan(A) = {y | y = Ax}

I N (AH) – left nullspace of A.

I R(AH) – row space of A.
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Fundamental Subspaces of a Matrix – “The Big Picture”

row space

nullspace

column space

left nullspace

(from Gilbert Strang’s “Introduction to Linear Algebra”, 4’th edition, 2009)
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Norm

I Lengths in a vector space are measured using a norm ‖ · ‖. A vector space
augmented with a norm is a normed (vector) space.

I A norm defined on a vector space V over field F is a mapping
‖ · ‖ : V → R, such that ∀α ∈ F ∀x,y ∈ V the following norm axioms hold

I x ∈ V : ‖x‖ ≥ 0 (non-negativity4),

I ‖x‖ = 0→ x = 0 (positive definiteness),

I ‖αx‖ = |α|‖x‖ (homogeneity),

I ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (subadditivity / triangle inequality).

I Examples:

I `p-norm: ‖x‖p =
(∑

i |xi|p
)1/p

,

I Lp-norm: ‖f‖p =

(∫
D

|f |pdµ
)1/p

<∞.

4Non-negativity axiom is redundant, as it can be derived from other axioms of a norm.
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Convexity and Norm

I A unit sphere is defined as {x | ‖x‖ = 1}.

I A set S ⊆ V is convex if ∀x,y ∈ S ∀0 ≤ λ ≤ 1 : λx + (1− λ)y ∈ S. In
other words, for any two points of S, all the points on the line between x
and y are also in S.

I A function f : V → R is convex if ∀x,y ∈ V ∀0 ≤ λ ≤ 1 :
f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

I Norms are convex.
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Convexity and Norm – `p (norms and convexity.m)

I Function fp(x) =

(∑
i

|xi|p
)1/p

mapping Rn to R is a norm iff

1 ≤ p ≤ ∞.

I Alternatively, fp is a norm iff the unit sphere {x | fp(x) = 1} induced by
fp is convex.

x1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x
2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

p=0.2

p=0.5

p=0.8

p=1.0

p=2.0

p=5.0

Unit spheres induced by fp(x) = (
P

i jxijp)1=p
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Common Vector Norms

Euclidean norm

‖x‖2 =
√
x2

1 + · · ·+ x2
n

Taxicab / Manhattan norm

‖x‖1 = |x1|+ · · ·+ |xn|

Chebyshev norm

‖x‖∞ = max{|x1|, . . . , |xn|}
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Norm Equivalence

Norm Equivalence

Two norms ‖ · ‖α and ‖ · ‖β are equivalent if there exist two positive constants
c1, c2 <∞ such that ∀x ∈ V:

c1‖x‖α ≤ ‖x‖β ≤ c2‖x‖α.

Theorem
In finite-dimensional vector spaces, all norms are equivalent.

Examples for x ∈ Cn

‖x‖1 ≤
√
n‖x‖2,

‖x‖1 ≤ n‖x‖∞,
‖x‖2 ≤

√
n‖x‖∞,

and, more generally, for 0 < p < q

‖x‖q ≤ ‖x‖p ≤ n(1/p−1/q)‖x‖q.
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Matrix Norms (operator norm.m)

I Frobenius Norm: ‖A‖F =

√
n∑

i,j=1

A2
ij = trace(AHA),

where trace() of a matrix is the sum of the elements on its main diagonal.

I Operator Norm (Induced p-norm): ‖A‖ = sup
x6=0

‖Ax‖p
‖x‖p = sup

‖x‖p=1

‖Ax‖p

An operator norm measures the maximum degree of distortion / amount
of stretch of a unit sphere under transformation by A.

x
1

-3 -2 -1 0 1 2 3

x 2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

....
5

2:0 3:0
!2:0 0:5

6.... : 3:696465

original unit sphere
distorted unit sphere

I For A,B ∈ Cn×n, ‖AB‖ ≤ ‖A‖‖B‖ (submultiplicativity).
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Inner Product, Angle, Projection

I Inner product (scalar product) of x,y ∈ V: 〈x,y〉 = xHy =
∑
i

sxiyi.

I Hölder’s inequality: 〈x,y〉 ≤ ‖x‖p‖y‖q for 1
p

+ 1
q

= 1.

I Cauchy-Bunyakovsky-Schwarz (CBS) inequality: 〈x,y〉 ≤ ‖x‖2‖y‖2

I CBS inequality inspires the following definition of an angle θ between
vectors x,y ∈ Rn:

cos θ =
〈x,y〉
‖x‖‖y‖

I Vectors x and y are orthogonal (x ⊥ y) if the cosine of the angle
between them is 0.

I The length of the orthogonal projection of x upon y is
〈
x, y
‖y‖

〉
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Inner Product, Angle, Projection – Example

I Problem: Given a matrix A ∈ Rn×n, find the amount of stretch caused
by A to vectors along a direction defined by a vector x in `2.

relative length?

I Given an arbitrary x, normalize it, so that its length is 1:

x̄ = x/‖x‖
(
‖x̄‖ =

∥∥∥∥ x

‖x‖

∥∥∥∥ =
‖x‖
‖x‖ = 1

)

I The amount of stretch caused by A along x:

new size

original size
=
| projx̄ Ax̄|
‖x̄‖ = | projx̄ Ax̄| = 〈x̄,Ax̄〉 =

〈x,Ax〉
‖x‖2 =

xTAx

xTx

I Derived Rayleigh quotient (generally, xH is used instead of xT).
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relative length?

I Given an arbitrary x, normalize it, so that its length is 1:

x̄ = x/‖x‖
(
‖x̄‖ =

∥∥∥∥ x

‖x‖

∥∥∥∥ =
‖x‖
‖x‖ = 1

)

I The amount of stretch caused by A along x:

new size

original size
=
| projx̄ Ax̄|
‖x̄‖ = | projx̄ Ax̄| = 〈x̄,Ax̄〉 =

〈x,Ax〉
‖x‖2 =

xTAx

xTx

I Derived Rayleigh quotient (generally, xH is used instead of xT).
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Linear Systems (Revisited)

I If the columns of matrix A of a linear system Ax = b span the entire
space, then b can be uniquely “explained” in terms of these columns (b
has a unique representation in this basis).

I If the columns of A span a subspace, then either b has infinitely many
representations (if it belongs to the column (sub)space) or it has no
precise representation in terms of A’s columns.

I Even if b is out of A’s range, we can replace b by the next best thing – its
projection upon the column (sub)space.

I UU † is a projector upon subspace spanned by U ’s columns, where
U † = (UHU)−1UH is U ’s pseudo-inverse.
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Determinants – Definition

I Permutation 〈p1, . . . , pn〉 of numbers 〈1, . . . , n〉 is their rearrangement.

I Sign σ(p) of permutation p is 1 if p has an even number of element
interchanges; otherwise, it is −1 (e.g., σ(〈1, 3, 2〉 = −1), σ(〈3, 1, 2〉 = 1)).

I Determinant det(An×n) = |A| =
∑
p

σ(p)A1,p1 . . . An,pn ∈ C (Leibniz).

I Simple determinants:

det(A1×1) = A11,

det(A2×2) = A11A22 −A12A21

I Expansion along a row (similarly, along a column):∣∣∣∣∣∣
1 2 0
4 3 5
1 1 2

∣∣∣∣∣∣ = (+1) · 1 ·
∣∣∣∣ 3 5

1 2

∣∣∣∣+ (−1) · 2 ·
∣∣∣∣ 4 5

1 2

∣∣∣∣+ (+1) · 0 ·
∣∣∣∣ 4 3

1 1

∣∣∣∣ =
= 1 · (3 · 2− 1 · 5)− 2 · (4 · 2− 1 · 5) + 0 · (4 · 1− 1 · 3) = −5.
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Determinants – Properties, Computation

Properties

I det(AT) = det(A),

I Adding rows to each other does not change det(A).

I Multiplying any row by α 6= 0 scales det(A) by α.

I Even # of row swaps does not change det(); odd number – changes sign.

I det(AB) = det(A) det(B)

I For (block-)triangular matrices∣∣∣∣∣∣∣∣∣
A11 A12 . . . A1n

0 A22 . . . A2n

...
...

. . .
...

0 0 . . . Ann

∣∣∣∣∣∣∣∣∣ =
n∏
i=1

det(Aii).

Computing det(A) for large A

det(A) = det(PLU) = det(P )︸ ︷︷ ︸
σ(P )

× det(L)︸ ︷︷ ︸
1

× det(U)︸ ︷︷ ︸∏n
i=1 Uii
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Determinants – Important Facts

Matrix Singularity

I An invertible An×n is called non-singular. Otherwise, it is singular.

I A is singular iff det(A) = 0. (det(A) ≈ 0 does not mean “almost
singular”.)

Thus,

I All the columns (rows) of A are linearly independent iff det(A) 6= 0. (In
this case, we say that matrix A is full-rank, i.e., rank(An×n) = n).

I Linear system Ax = b has a unique solution iff det(A) 6= 0.

I Homogeneous linear system Ax = 0 has non-trivial solutions iff
det(A) = 0.
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Eigenproblem

Definition
For a square matrix An×n, we are interested in those non-trivial vectors x 6= 0
that do not change their direction under transformation by A:

Ax = λx, λ ∈ C.

These x are eigenvectors5 of A, and the corresponding scaling factors λ are
eigenvalues of A. Pairs 〈λ,x〉 of corresponding eigenvalues and eigenvectors
are eigenpairs. Distinct eigenvalues of matrix A comprise its spectrum σ(A).
Spectral radius ρ(A) = max{|σi(A)|}

5If x is an eigenvector of A, then α · x is also an eigenvector. Thus, an eigenvector defines an
entire “direction” or, more generally, a subspace, referred to as eigenspace, whose elements do not
change direction when transformed by A. Thus, an eigenspace is an invariant subspace of its
matrix.
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Characteristic Polynomial, Its Roots and Coefficients

Definition

I Goal: find non-trivial solutions of An×nx = λx ⇐⇒ (A− λI)x = 0,
where I is the n-by-n identity matrix (Iii = 1, Iij = 0(i 6= j).

I Homogeneous system (A− λI)x = 0 has non-trivial solutions iff its
matrix is singular, that is, if det(A− λI) = 0.

I p(λ) = det(A− λI) is the characteristic polynomial (in λ, of degree n)
of matrix A; its roots are A’s eigenvalues, and multiplicity of each root is
the algebraic multiplicity of the corresponding eigenvalue. p(λ) = 0 is the
characteristic equation for A.

Useful Facts

I From the fundamental theorem of algebra, any n-by-n square matrix
always has n (not necessarily distinct) complex eigenvalues.

I From the complex conjugate root theorem, if a+ i · b ∈ C is an eigenvalue
of A ∈ Rn×n, then a− i · b is also its eigenvalue.

I From Vieta’s theorem applied to p(λ) = λn + c1λ
n−1 + · · ·+ cn−1λ+ cn,

I λ1 + λ2 + · · ·+ λn = −c1 = trace(A)
I λ1λ2 . . . λn = (−1)ncn = det(A)
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Resolving Eigenproblem Directly

Algorithm

I Step 0: estimate where eigenvalues are located.

I Step 1: solve the characteristic equation det(A− λI) = 0 using the
estimates from Step 0, and find eigenvalues.

I Step 2: for each eigenvalue λi, find the corresponding eigenspace by
solving homogeneous system (A− λiI)x = 0. This eigenspace is
comprised of non-trivial members of N (A− λiI).
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Resolving Eigenproblem Directly – Example (eigen direct.m)

A =


2 2

3
− 2

3
−1

− 1
3

2 2
3
−1

1
3
− 1

3
1

,
p(λ) = det(A− λI) = −λ3 + 6λ2 − 11λ+ 6,

λ1,2,3 = 1, 2, 3,

λ1 = 1 : N (A− λ1I) = span(
[

1 1 1
]T︸ ︷︷ ︸

e1

),

λ2 = 2 : N (A− λ2I) = span(
[

1 1 0
]T︸ ︷︷ ︸

e2

),

λ3 = 3 : N (A− λ3I) = span(
[

1 −2 1
]T︸ ︷︷ ︸

e3

).
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Resolving Eigenproblem – What Actually Works (eigen arnoldi.m)

I Bad news: solving an equation p(λ) = 0 for high-degree p is very hard.

I Most real-world eigensolvers use the idea of Krylov sequences
{x,Ax,A 2x, . . . } and subspaces spanned by them.

I A popular eigensolver for sparse matrices – Arnoldi/Lancsoz iteration (an
advanced version of the power method). It allows to quickly compute
several (largest, smallest, closest to a given value) eigenvalues and the
corresponding eigenvectors of a sparse matrix, mostly, using matrix-vector
multiplication. This method is used by MATLAB’s eigs and by Python’s
scipy.sparse.linalg.eigs.

I For dense matrices, eigensolvers based on Schur or Cholesky
decomposition may be used.
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Eigenvalue Localization

Sometimes, it may be enough to have a good estimate of where eigenvalues
are, without actually computing them. That estimation is referred to as
eigenvalue localization.

Tools

I Crude bound: |λ(A)| < ‖A‖.
I Cauchy’s Interlacing Theorem: for real symmetric n-by-n matrix

A =

[
B c

cT δ

]
, where δ ∈ R,

λn(A) ≤ λn−1(B) ≤ . . . λk(B) ≤ λk(A) ≤ λk−1(B) ≤ · · · ≤ λ1(B) ≤ λ1(A).

I Gerschgorin Circles The eigenvalues of A ∈ Cn×n are trapped inside the
union of Gerschgorin circles |z −Aii| < ri, where

ri = min {
n∑
j=1
j 6=i

|Aij |,
n∑
j=1
j 6=i

|Aji|, }, i = 1, . . . , n. A k Gerschgorin circles

disjoint from others contain exactly k eigenvalues.
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Gerschgorin Circles – Example

1 2 3 4 50-1

1
2

3
4

-2
-1

*

*

*

*
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Eigendecomposition (eigendecomp.m)

I A ∈ Cn×n is diagonalizable if there is an invertible P such that P −1AP
is diagonal.

I If a real-valued matrix is symmetric, then it is diagonalizable. (Though,
invertible matrices do not have to be symmetric in general.)

I Each diagonalizable A permits (eigen)decomposition:

A =

 | . . . |
q1 . . . qn
| . . . |


︸ ︷︷ ︸

Q


λ1 0 . . . 0
0 λ2 . . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . λn


︸ ︷︷ ︸

Λ

 | . . . |
q1 . . . qn
| . . . |

−1

= QΛQ
−1
.

I Analog for non-diagonalizable matrices – Jordan normal form.
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Eigendecomposition – MV Multiplication for Real Symmetric Matrices

I Assume A ∈ Rn×n – symmetric.

I A is diagonalizable, and its eigenvectors are orthogonal.

I For orthogonal matrix A, A−1 = AT.

Ax = (QΛQ−1)x =

(
n∑
i=1

λiqiq
T
i

)
x =

n∑
i=1

λiqi(q
T
ix) =

n∑
i=1

λi 〈x, qi〉︸ ︷︷ ︸
| projqi

x|

qi
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Singular Value Decomposition (SVD)

Theorem
For every (rectangular) matrix A ∈ Cn×m, there are two unitary6 matrices
U ∈ Cm×m and V ∈ Cn×n, as well as a matrix Σ ∈ Rm×n of the form

Σ =


σ1 0 . . .

0 σ2

. . .

.

.

.
. . .

. . .

 ,
with σ1 ≥ σ2 ≥ · · · ≥ σmin (n,m) ≥ 0, such that A = UΣV H. Diagonal values
of Σ – singular values of A, columns of U and V – left and right singular
vectors of A, respectively.

(Notice redundant columns in U and rows (or columns) in Σ.)
6A matrix A ∈ Cn×n is unitary if AHA = AAH = I. Unitary matrices play a role similar to

the role a scalar 1 plays (“a size-preserving transform”.)
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Graphs: definitions, properties

I An (edge-weighted) graph is a tuple G = 〈V,E,w〉, where V is a set of
nodes, E ⊆ V × V is a set of edges between the nodes, and w : E → R
defined edge weights. If w is not specified, then edge weights can assumed
to be equal 1.

I If E is a symmetric relation (and w, if specified, is a symmetric function),
then G is said to be undirected; otherwise, it is directed.

I A graph may have weights on its nodes rather than the edges (or on
both). A node-weighted graph can be transformed into an edge-weighted
graph, or vice versa.

I A graph G = 〈V,E,w〉 is (weakly) connected if for any v1, v2 ∈ V ,
v1 6= v2, we can reach v2 from v1 by walking along the adjacent edges E
(ignoring their direction). A (weakly) disconnected graph G consists of
connected components (CC), which are maximal (weakly) connected
subgraphs.

I When we take into account direction of edges, the notion of
connectedness extends to the notion of strong connectedness (strongly
connected components (SCC) are, then, defined similarly to weakly
connected components).
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Graphs – Examples

3

1

7

3

4.2
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Graphs – Special Graphs
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Representation of Graphs – Adjacency Matrix

I All definitions are given for a graph G = 〈V,E,w〉 having |V | = n nodes
and |E| = m edges.

I The most popular representation of a graph is its adjacency matrix A:

Aij =

{
w(〈i, j〉) = wij if 〈i, j〉 ∈ E,
0 otherwise.

If weights w are not specified, then A is a binary matrix.
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Representation of Graphs – Adjacency Matrices of Special Graphs
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Representation of Graphs – Degree Matrix

I The in-degree din
i of node vi is the sum of the weights on all of its

incoming edges. The out-degree dout
i of node vi is similarly defined via

vi’s outgoing edges. For undirected graphs, both in-degree and out-degree
are equal di referred to as simply the degree of node vi. For unweighted
graphs, the degree measures the number of a node’s (in-, our-, or all)
neighbors.

I The degree matrix D = diag({di}1...n) of a graph G is a diagonal matrix
with node degrees on its main diagonal. For directed graphs, in-degree and
out-degree matrices can be similarly defined using the appropriate degree
definitions.
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Laplacian of Undirected Graphs

(Combinatorial) Laplacian

L = D −A

I Weighted graph:

Lij =

{
Dii = di =

∑
〈i,`〉∈E wi,` if i = j,

−wij if 〈i, j〉 ∈ E,
0 otherwise;

I Unweighted graph:

Lij =

{
di =

∑
〈i,`〉∈E 1 if i = j,

−1 if 〈i, j〉 ∈ E,
0 otherwise.

Other Laplacians

L sym = D −1/2LD 1/2 = I −D −1/2AD 1/2,

L rw = D −1A.
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Spectral Graph Theory

Spectral Graph Theory

Graphs are usually represented with matrices7. Spectral graph theory attempts
to connect spectral properties of these matrices with the corresponding graphs’
structural properties.

Limitations
Most results of spectral graph theory are obtained for undirected and
unweighted graphs, i.e., graphs having binary symmetric adjacency matrices. If
a result applies to weighted graphs, it will be explicitly stated.

7Some may even go as far as to claim that graphs and matrices are the same thing.
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Spectrum of Adjacency Matrix – Walks in Graphs

I A ∈ {0, 1}n×n – adjacency matrix of an undirected unweighted graph G.

I Aij – number of walks of length 1 in G between nodes vi and vj .

I (A k)ij – number of walks of length k in G between nodes vi and vj .

I (A k1)i – number of walks of length k ending at vi.

I 1TA k1 – number of walks of length k in G.
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Largest8 Eigenvalue of Adjacency Matrix µ1 = µmax

I Connection to µmax (undirected, unweighted, connected G):

1
TA k

1 = (since A is real and symmetric) = 1
T(Qdiag (µi)Q

−1)k1 =

= (since Q is orthogonal) = 1
TQ diag (µki )Q−1

1 =

= 1
T

(
n∑
i=1

µki qiq
T
i

)
1 =

n∑
i=1

µki (1Tqi)(1
Tqi)

T =
n∑
i=1

µki 〈qi,1〉
2 =

= (1 = α1q1 + · · ·+ αnqn) =
n∑
i=1

µki

(
n∑
j=1

αj
〈
qi, qj

〉)2

=
n∑
i=1

µki (αi)
2;

lim
k→∞

(
1

TA k
1
)1/k

= lim
k→∞

(
n∑
i=1

µki α
2
i

)1/k

=

= lim
k→∞

µmax

α2
max +

∑
“i 6=max′′

(
µi

µmax

)k
α2
i

1/k

= µmax(= ‖A‖).

I Thus, µkmax = ‖A(G)‖k is ≈ the number of walks of length k in G.
8The largest eigenvalue is such w.r.t. its absolute value.
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Largest Eigenvalue of Adjacency Matrix µ1 = µmax – Summary

Derived

I µkmax = ‖A(G)‖k is ≈ the number of walks of length k in G.

I For directed A, the meaning of lim
k→∞

A k1 = qmax is close to the one of

PageRank.

Beyond Walks ((†) – applies to weighted graphs)

I (†) If graph G is connected, µmax has multiplicity 1, and its eigenvector is
positive (all its entries are strictly positive).

I (†) davg ≤ µ1 ≤ dmax (davg, dmax – mean and maximum node degrees).

I max {davg,
√
dmax} ≤ µmax ≤ dmax.

I (†) If G is connected, and µmax = dmax, then ∀i : di = dmax.

I (†) A connected graph is bipartite iff µmin = −µmax.

I A graph is bipartite iff its spectrum is symmetric about 0.

I χ(G) ≥ 1 + µmin/µmax.
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I A graph is bipartite iff its spectrum is symmetric about 0.

I χ(G) ≥ 1 + µmin/µmax.
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Smallest Eigenvalues of Combinatorial Laplacian

I L = D −A.

I Eigenvalues of L are non-negative: 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn.

I L is singular ⇒ 0 is its eigenvalue corresponding to eigenvector 1.

I If G is connected, λ1 = 0 has multiplicity 1.

I If G has k connected components, λ1 = 0’s multiplicity is k.

I The harder it is to disconnect G by removing its edges, the larger the gap
between λ1 = 0 and λ2 > 0 is.

I λ2 – algebraic connectivity (a.k.a. Fiedler value, spectral gap) – a
measure of graph connectedness.

I q2 – Fiedler vector – eigenvector associated with λ2 – solution to a
relaxed min-cut (sparsest cut) in G. The same eigenvector of a normalized
Laplacian L sym – solution to a relaxed normalized min-cut
(“edge-balanced sparsest cut”) in G.

53 / 58



Smallest Eigenvalues of Combinatorial Laplacian

I L = D −A.

I Eigenvalues of L are non-negative: 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn.

I L is singular ⇒ 0 is its eigenvalue corresponding to eigenvector 1.

I If G is connected, λ1 = 0 has multiplicity 1.

I If G has k connected components, λ1 = 0’s multiplicity is k.

I The harder it is to disconnect G by removing its edges, the larger the gap
between λ1 = 0 and λ2 > 0 is.

I λ2 – algebraic connectivity (a.k.a. Fiedler value, spectral gap) – a
measure of graph connectedness.

I q2 – Fiedler vector – eigenvector associated with λ2 – solution to a
relaxed min-cut (sparsest cut) in G. The same eigenvector of a normalized
Laplacian L sym – solution to a relaxed normalized min-cut
(“edge-balanced sparsest cut”) in G.

53 / 58



Smallest Eigenvalues of Combinatorial Laplacian

I L = D −A.

I Eigenvalues of L are non-negative: 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn.

I L is singular ⇒ 0 is its eigenvalue corresponding to eigenvector 1.

I If G is connected, λ1 = 0 has multiplicity 1.

I If G has k connected components, λ1 = 0’s multiplicity is k.

I The harder it is to disconnect G by removing its edges, the larger the gap
between λ1 = 0 and λ2 > 0 is.

I λ2 – algebraic connectivity (a.k.a. Fiedler value, spectral gap) – a
measure of graph connectedness.

I q2 – Fiedler vector – eigenvector associated with λ2 – solution to a
relaxed min-cut (sparsest cut) in G. The same eigenvector of a normalized
Laplacian L sym – solution to a relaxed normalized min-cut
(“edge-balanced sparsest cut”) in G.

53 / 58



Smallest Eigenvalues of Combinatorial Laplacian

I L = D −A.

I Eigenvalues of L are non-negative: 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn.

I L is singular ⇒ 0 is its eigenvalue corresponding to eigenvector 1.

I If G is connected, λ1 = 0 has multiplicity 1.

I If G has k connected components, λ1 = 0’s multiplicity is k.

I The harder it is to disconnect G by removing its edges, the larger the gap
between λ1 = 0 and λ2 > 0 is.

I λ2 – algebraic connectivity (a.k.a. Fiedler value, spectral gap) – a
measure of graph connectedness.

I q2 – Fiedler vector – eigenvector associated with λ2 – solution to a
relaxed min-cut (sparsest cut) in G. The same eigenvector of a normalized
Laplacian L sym – solution to a relaxed normalized min-cut
(“edge-balanced sparsest cut”) in G.

53 / 58



Smallest Eigenvalues of Combinatorial Laplacian

I L = D −A.

I Eigenvalues of L are non-negative: 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn.

I L is singular ⇒ 0 is its eigenvalue corresponding to eigenvector 1.

I If G is connected, λ1 = 0 has multiplicity 1.

I If G has k connected components, λ1 = 0’s multiplicity is k.

I The harder it is to disconnect G by removing its edges, the larger the gap
between λ1 = 0 and λ2 > 0 is.

I λ2 – algebraic connectivity (a.k.a. Fiedler value, spectral gap) – a
measure of graph connectedness.

I q2 – Fiedler vector – eigenvector associated with λ2 – solution to a
relaxed min-cut (sparsest cut) in G. The same eigenvector of a normalized
Laplacian L sym – solution to a relaxed normalized min-cut
(“edge-balanced sparsest cut”) in G.

53 / 58



Spectral Bisection (spectral bisection.m)

18 cut edges

Spectral bisection using 7
2
 of Combinatorial Laplacian (6

2
 = 0.006523)

Figure : Example of spectral bisection with Fiedler vector.

(The “Tapir” graph as well as the plotting functions come from meshpart

toolbox by John R. Gilbert and Shang-Hua Teng.)

54 / 58

https://cs.ucsb.edu/~victor/pub/ucsb/igert-2015/examples/spectral_bisection.m
http://cs.ucsb.edu/~gilbert/


Spectral Clustering (spectral clustering.m)

Partitioning into 2 clusters Partitioning into 3 clusters

Partitioning into 4 clusters Partitioning into 5 clusters

Figure : Example of spectral clustering using normalized Laplacian and k-means.

(The “Tapir” graph as well as the plotting functions come from meshpart

toolbox by John R. Gilbert and Shang-Hua Teng.)
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https://cs.ucsb.edu/~victor/pub/ucsb/igert-2015/examples/spectral_clustering.m
http://cs.ucsb.edu/~gilbert/


What is next

Relevant Courses at UCSB
I ECE/CS211A Matrix Analysis – a decent overview of most fundamentals of linear algebra,

from the definition of block-matrix arithmetic to spectral theory.

I CS290H Graph Laplacians and Spectra – this course is focused on the study of spectra of
graph Laplacians as well as on the accompanying computational problems (extracting
eigenpairs of Laplacians, solving Laplacian linear systems).

Reading – Linear Algebra

I “Core Matrix Analysis” by Shiv Chandrasekaran – a textbook for ECE/CS211A. Provides an
overview of most necessary fundamentals.

I “Introduction to Linear Algebra” (any edition) by Gilbert Strang – an entry-level book about
fundamentals of linear algebra; great exposition.

I “Matrix Analysis and Applied Linear Algebra” by Carl Meyer – an advanced linear algebra
textbook; pick this one if Strang’s textbook feels too easy to read.
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http://www.cs.ucsb.edu/~gilbert/cs290hSpr2014/
http://scg.ece.ucsb.edu/publications/cma.pdf
http://www.amazon.com/Introduction-Linear-Algebra-Fourth-Gilbert/dp/0980232716/
http://www.matrixanalysis.com


What is next

Reading – “Linear Algebra of Graphs”

I “Spectral Graph Theory” by Fan Chung (1997).

I “Complex Graphs and Networks” by Fan Chung (2006).

I Dan Spielman’s course on spectral graph theory.

I “Eigenvalues of Graphs” by László Lovász (2007).

I Luca Trevisan’s course on spectral graph theory.

I “Algebraic connectivity of graphs” by Miroslav Fiedler (1973).

I “A tutorial on spectral clustering” by Ulrike von Luxburg (2007).
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http://www.math.ucsd.edu/~fan/research/revised.html
http://www.math.ucsd.edu/~fan/complex/
http://www.cs.yale.edu/homes/spielman/
http://www.cs.yale.edu/homes/spielman/561/
http://www.cs.elte.hu/~lovasz/eigenvals-x.pdf
http://theory.stanford.edu/~trevisan/cs359g
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