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Introduction

• Directed social network, |V | = n users, |E| = m social ties

• Network is sparse: m = O(n)
• User opinions are polar (e.g., the Republicans vs. the Democrats)

• Opinion ∈ {+1, 0,−1}
• Network structure does not change much, but user opinions evolve

Figure: Zachary’s Karate Club network3

3Wayne Zachary. “An information flow model for conflict and fission in small groups”. In:
Journal of Anthropological Research (1977), pp. 452–473.

4 / 26



Polar Opinion Dynamics

• Network state Gt ∈ {+1, 0,−1}n: opinions of all users at time t

• A time series of network states
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• Network state Gt ∈ {+1, 0,−1}n: opinions of all users at time t

• A time series of network states
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Questions:

• How does the network evolve?

• What will be the future opinions of individual users?

• When does the network “behave” unexpectedly?
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Application I: Anomalous Event Detection

• dt = d(Gt, Gt+1): “the amount of change” in the network’s state

• dt measures the unexpectedness of transition Gt → Gt+1

• What is expected is determined by a given opinion dynamics model

 → 
expected

→ 
unexpected

• Anomaly: an unexpected value in the series d0, d1, d2, . . . , dt
• A distance-based approach to anomaly detection4

4Stephen Ranshous et al. “Anomaly detection in dynamic networks: a survey”. In: Wiley
Interdisciplinary Reviews: Computational Statistics 7.3 (2015), pp. 223–247.

6 / 26



Application II: User Opinion Prediction

• dt = d(Gt, Gt+1) – “the amount of change” in the network’s state

• dt measures the unexpectedness of transition Gt → Gt+1

• What is expected is determined by a given opinion dynamics model

• Having observed the network state’s evolution G0, G1, . . . , Gnow

we would like to predict Gfuture

• Distance-based approach to future network state prediction:

d0, d1, . . . , dnow
extrapolate−−−−−−−→ dfuture

reconstruct−−−−−−−→ Gfuture
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Distance Measure-Based Analysis

• Central question:

How to measure the distance d(G1, G2) between network states?

• The distance measure d(•, •) should

. capture how polar opinions evolve in the network;

. be efficiently computable;

. be a metric.
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Existing Vector Space Distance Measures

• Coordinate-wise comparison

. `p d(x, y) = (
∑

i |xi − yi|
p)1/p

. Hamming d(x, y) =
∑

i δxi,yi

. Canberra d(x, y) =
∑

i
|xi−yi|
|xi|+|yi|

. Jaccard d(x, y) = |x∩y|
|x∪y|

. Cosine d(x, y) = cos (̂x, y) = 〈x,y〉
‖x‖ ‖y‖

. Kullback-Leibler d(x, y) = (dKL(x||y)) =
∑

i ln [xi/yi]xi

• Using the difference vector

. Quadratic Form d(x, y) =
√

(x− y)TA(x− y)

. Mahalanobis d(x, y) =
√

(x− y)T cov−1(x, y)(x− y)
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Existing Network-Specific Distance Measures

• Isomorphism-based distance measures5

• Graph Edit Distance6

• Iterative distance measures7

• Graph Kernels8

• Feature-based distance measures9

5Horst Bunke and Kim Shearer. “A graph distance metric based on the maximal common
subgraph”. In: Pattern recognition letters 19.3 (1998), pp. 255–259.

6Xinbo Gao et al. “A survey of Graph Edit Distance”. In: Pattern Analysis and Applications
13.1 (2010), pp. 113–129.

7Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. “Similarity flooding: A versatile
graph matching algorithm and its application to schema matching”. In: IEEE Data Engineering.
2002, pp. 117–128.

8S Vichy N Vishwanathan et al. “Graph kernels”. In: The Journal of Machine Learning
Research 11 (2010), pp. 1201–1242.

9Owen Macindoe and Whitman Richards. “Graph comparison using fine structure analysis”.
In: IEEE SocialCom. IEEE. 2010, pp. 193–200.
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Existing Network-Specific Distance Measures

• Isomorphism-based distance measures
. compare networks structurally

. disregard node states

• Graph Edit Distance
. edit distance over node/edge insertion, deletion, substitution operations

. mostly, structure-driven; expensive to compute

• Iterative distance measures
. nodes are similar if their neighborhoods are similar

. hard to account for node state differences in a socially meaningful way; expensive to
compute

• Graph Kernels
. compare substructures—walks, paths, cycles, trees—of non-aligned (small) networks

. opinion dynamics-unaware; expensive to compute

• Feature-based distance measures
. compare degree, clust. coeff., betweenness, diameter, frequent substructures, spectra

. only look at summaries; does not capture opinion dynamics
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Social Network Distance (SND): Overview5

5Amelkin, Bogdanov, and Singh, “A Distance Measure for the Analysis of Polar Opinion
Dynamics in Social Networks (Extended Paper)”.
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Social Network Distance (SND): Overview

• Exact computation of P: computationally hard

• Assume user activations are independent

∼ “opinion flows” in the network do not interfere with each other

• Assume activations happens via the most likely scenarios

∼ opinions spread via shortest paths

0.
05

0.
03

• ⇒ SND is defined as a transportation problem

that can be exactly
solved in O(n) /*under some reasonable assumptions*/
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Earth Mover’s Distance (EMD) as a Basic Primitive

• Earth Mover’s Distance (EMD): “edit distance for histograms”

• Edit: transportation of a mass unit from i’th to j’th bin at cost Dij

...
(histogram) (histogram)(ground distance)(network state) (network state)

EMD(P,Q,D) =
n∑

i,j=1

Dij f̂ij

/ n∑
i,j=1

f̂ij ,

n∑
i,j=1

fijDij → min,

n∑
i,j=1

fij = min

{
n∑

i=1

Pi,

n∑
i=1

Qi

}

fij ≥ 0,
n∑

j=1

fij ≤ Pi,
n∑

i=1

fij ≤ Qj , (1 ≤ i, j ≤ n)
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Social Network Distance (SND) – Definition

Ground distance
computed in:

Opinion type
“transported”: + –
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EMD?– Redesign of Earth Mover’s Distance for SND

• EMD has 2 problems:

(i) cannot adequately compare histograms with different total mass

(ii) cannot express a single user infecting multiple other users

• EMD?—generalization of EMD—resolves both issues.

1/2 1

1

0

01/2

1

1

0

1

“bank bins”

1/2

1/2

“bank bins”
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• EMD has 2 problems:

(i) cannot adequately compare histograms with different total mass

(ii) cannot express a single user infecting multiple other users

• EMD?—generalization of EMD—resolves both issues.

1/2 1

1

0

01/2

1

1

0

1

“bank bins”

(i) mass mismatch penalty is related to the network’s structure

(ii) users can spend “extra mass” to infect more neighbors
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EMD?– Redesign of Earth Mover’s Distance for SND

• EMD has 2 problems:

(i) cannot adequately compare histograms with different total mass

(ii) cannot express a single user infecting multiple other users

• EMD?—generalization of EMD—resolves both issues.

EMD
?
(P,Q) = EMD(P̃ , Q̃, D̃) max

{∑
Pi,
∑

Qj

}
,

P̃ =
[
P, P

(1)
, . . . , P

(n)
]
, Q̃ =

[
Q,Q

(1)
, . . . , Q

(n)]
,

D̃ =

[
D D + 1n ⊗ γT

D + 1T
n ⊗ γ D + 1n ⊗ γT + 1T

n ⊗ γ − 2 diag(γ)

]
,

P
(i)

=

{
Pi

/ (∑n
j=1 Qj −

∑n
k=1 Pk

)
, if

∑
Qj >

∑
Pk,

0, otherwise.

P
(i): capacity of the i’th bank bin,

γ = [γ1, . . . , γn]
ᵀ : ground distances to/from bank bins.
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EMD? vs. EMD

L R

• Mass distribution in cluster L is identical in all G1, G2, G3

• G1 → G2: mass propagates from L to R through “the bridges”

• G1 → G3: same amount of mass randomly distributed over R
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• G1 → G2: mass propagates from L to R through “the bridges”

• G1 → G3: same amount of mass randomly distributed over R

• Expected: d(G1, G2) < d(G1, G3)

• Of all existing versions of EMD, only EMD? captures this intuition
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Computation of SND – Overview

• Computing SND ∼ computing 4 instances of EMD?

SND(P,Q) = EMD
?
(P

+
, Q

+
, D(P,+)) + EMD

?
(P

−
, Q

−
, D(P,−))+

EMD
?
(Q

+
, P

+
, D(Q,+)) + EMD

?
(Q

−
, P

−
, D(Q,−)).

• Computation of a single instance of EMD? involves:

. computing ground distance D

. solving the underlying transportation problem

• Direct computation:

. computing ground distance D

– all-to-all shortest paths

O(n2 logn)

. solving the underlying transportation problem

– Karmakar’s algorithm / transportation simplex

“>” O(n3)

• Solution: exploit the problem’s structure; use specialized algorithms
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Efficient Computation of SND / EMD?

• Challenge: efficiently compute EMD?(P,Q,D) over sparse network

. D (all-to-all shortest paths): O(n2 logn)

. EMD? (BP min-cost flow): O(n3 logn)

• Assumption 1: number n∆ of users who changed their opinions � n

• Assumption 2: Dij ∈ Z+ < U = const

. discard inactive bins

. discard bins having similar values (⇐ D is semimetric)

. use Dijkstra with radix + Fibonacci heaps (⇐ Assumption 2)

. use modified Goldberg-Tarjan algorithm (⇐ Assumptions 1, 2)

P
1

P
2

P
3

P
4

Q
1

Q
2

Q
3

Q
4

...

# bins:

• Achieved T = O(n∆(n log
√
U + n2

∆ log (n∆nU)))

• If n∆ < const <∞, then T = O(n)
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Efficient Computation of SND / EMD?

• Challenge: efficiently compute EMD?(P,Q,D) over sparse network

. D (few-to-most shortest paths): O(n2 logn) O(n∆n logn)

. EMD? (BP min-cost flow): O(n3 logn)

• Assumption 1: number n∆ of users who changed their opinions � n
• Assumption 2: Dij ∈ Z+ < U = const

. discard inactive bins
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. use Dijkstra with radix + Fibonacci heaps (⇐ Assumption 2)

. use modified Goldberg-Tarjan algorithm (⇐ Assumptions 1, 2)

P
2

P
3

Q
1

Q
4

# bins:

(unbalanced BP network)

• Achieved T = O(n∆(n log
√
U + n2

∆ log (n∆nU)))
• If n∆ < const <∞, then T = O(n)
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5Ravindra K Ahuja et al. “Faster algorithms for the shortest path problem”. In: Journal of the
ACM 37.2 (1990), pp. 213–223.
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Experimental Setting

• Synthetic data

. scale-free network, n = |V | = 10k . . . 200k, γ = −2.9 · · · − 2.1

. about equal number of initial adopters for + and −

. subsequent network states generated ∼ Independent Cascade

• Twitter data

. crawled tweets mentioned “Obama” from May’08 to Aug’11

. network of 10k politically-active users

. each user has 130 neighbors, on average

. user opinions are tracked over the entire period, quarter-wise

• Competing distance measures

. hamming(P,Q)

. quad-form(P,Q,L) =
√

(P −Q)L(P −Q)T

. walk-dist(P,Q): summarizes how different the network’s
users are from their respective neighbors
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Application I: Anomaly Detection (Synthetic Data)

Network state pair index
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Distance between adjacent network states

SND hamming walk-dist quad-form          simulated anomaly

Figure: Anomaly detection on synthetic data. |V | = 20k, scale-free exponent γ = −2.3. A
series of 40 network states is generated using Pnbr = 0.12 and Pext = 0.01 for normal and
Pnbr = 0.08 and Pext = 0.05 for anomalous network states’ generation, respectively. The three
simulated anomalies are displayed as solid vertical lines.

• SND is good at detecting the anomalies not easily revealed just by
looking at the rate of new user activation
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Application I: Anomaly Detection (Synthetic Data)
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Figure: ROC curves comparing the quality of anomaly detection by different distance measures in
a series of 300 network states over synthetic network with |V | = 30k and scale-free exponent
γ = −2.3. The network states are generated using Pnbr = 0.08 and Pext = 0.001 for normal
and Pnbr = 0.07 and Pext = 0.011 for anomalous instances.
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Application I: Anomaly Detection (Twitter Data)
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Figure: Anomaly detection on Twitter data (May’08-Aug’11). The distance series are
accompanied by the curve showing Google Trends’ scaled interest in topic “Obama”. Network
states detected to be anomalous by at least one distance measure are displayed as solid vertical
lines.

• SND typically spikes and disagrees with other distance measures
during “polarizing events” (e.g., “Obama Care”)

• Events accompanied by drastic change in the rate of new user
activation can be detected by any distance measure
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Application II: User Opinion Prediction

• Given a series G0, G1, . . . , Gt−1, Gt of network states

• Goal: predict opinions of select users in Gt based on G0...t−1

• Approach

. Compute distances (SND) between adjacent network states

d(G0, G1), . . . , d(Gt−2, Gt−1)

. Extrapolate (LS) distance series to get expected dexp = dexp(Gt−1, Gt)

. Assign opinions in Gt to minimize |d(Gt−1, Gt)− dexp|
• Baselines

. same approach with other distance measures

. simulation until convergence (IC, LT) [Najar12]

. (shallow) max-likelihood [Saito11]

. based on community detection via label propagation [Conover11]
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Application II: User Opinion Prediction

User Opinion Prediction Accuracy, %

Method
Synthetic Data Twitter Data
µ σ µ σ

SND 74.33 2.65 75.63 5.60

hamming 68.44 12.34 68.13 5.80

quad-form 66.67 13.58 67.50 9.63

walk-dist 56.22 15.35 31.88 9.98

icc-simulation 76.25 9.54 59.38 4.17

ltc-simulation 67.50 11.65 58.75 5.18

icc-max-likelihood 67.41 7.03 57.50 8.02

ltc-max-likelihood 57.50 8.45 55.63 11.78

community-lp 65.25 9.43 56.87 8.43

Table: Means µ and standard deviations σ of user opinion prediction
accuracies. Synthetic data generated using Independent Cascade.
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Scalability of SND

• MATLAB/C++ implementation of SND publicly available (email us)

• Uses a simpler Dijkstra and an unmodified Goldberg-Tarjan

• Still scales well in practice
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Conclusion

• SND—first distance measure designed for the comparison of
network states capturing dynamics of polar opinions.

• SND quantifies how likely it is that one state of a social network has
evolved into another state under a given model of polar opinion
propagation.

• It is computable in time linear in |V |, and, as such, applicable to
real-world online social networks.

• In anomalous event detection, SND tends to detect well the events
that have likely caused opinion polarization in the network. It is a
good idea to use SND when simple summaries (e.g., number of new
activations) are not informative enough.

• In user opinion prediction, SND performs reasonably well (75%
accuracy), and outperforms baselines on real-world data.
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Future Work

• Using SND in applications such as classification, clustering, and
search.

• Extending SND to capture changes in both user opinions and
network structure.
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Implementation of SND

http://cs.ucsb.edu/~victor/pub/ucsb/dbl/snd/
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