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Abstract—Modeling and predicting people’s opinions plays an
important role in today’s life. For viral marketing and political
strategy design, it is particularly important to be able to analyze
competing opinions, such as pro-Democrat vs. pro-Republican.
While observing the evolution of polar opinions in a social network
over time, can we tell when the network “behaved”’ abnormally?
Furthermore, can we predict how the opinions of individual
users will change in the future? To answer such questions, it
is insufficient to study individual user behavior, since opinions
spread beyond users’ ego-networks. Instead, we need to consider
the opinion dynamics of all users simultaneously. In this work,
we introduce the Social Network Distance (SND)—a distance
measure that quantifies the likelihood of evolution of one snapshot
of a social network into another snapshot under a chosen opinion
dynamics model. SND has a rich semantics of a transportation
problem, yet, is computable in pseudo-linear time, thereby, being
applicable to large-scale social networks analysis. We demonstrate
the effectiveness of SND in experiments with Twitter data.

I. INTRODUCTION

Modeling and predicting people’s opinions plays an im-
portant role in today’s life. For applications in marketing and
political strategy design, it is particularly important to be able
to analyze competing opinions, such as pro-Democrat vs. pro-
Republican. While observing the evolution of polar opinions
in a social network over time, can we tell when the network
“behaved”’ abnormally? Furthermore, can we predict how
the opinions of individual users will change in the future?
To answer such questions, we need a distance measure for the
comparison of states of a social network that would model user
opinion evolution taking into account both the location of user
opinions as well as the pathways for their likely dissemination.
In this work, we develop such a distance measure and employ
it for anomaly detection and opinion prediction in Twitter data.

While the dynamics of a social network can be character-
ized by the evolution of both the network’s structure and the
user opinions, here, we focus on the latter. We posit there are
two polar opinions in the network, positive “+” and negative
“−”. Users having no or an unknown opinion are neutral, while
those expressing opinion—active. The positive, neutral, and
negative opinions are quantified as +1, 0, and −1, respectively.
A network state is comprised of the opinions of all network
users at a given time. Polar opinions compete in that users are
less willing to spread opinions different from their own, yet,
are more eager to spread “friendly” opinions. Such competition
may arise when the notions the opinions relate to—political
parties or smartphone brands—are inherently competing.

Having observed the behavior of social network users over
time and quantified their opinions, we obtain a time series
of network states. To analyze it, we treat network states as
members of a metric space induced by a distance measure
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governed by both the network’s structure and user opinions.
We propose a semantically and mathematically appealing, as
well as efficiently computable distance measure Social Net-
work Distance (SND) for the social network states containing
polar opinions, and show its utility in applications.

To assess the distance between network states, SND takes
into account how opinions can propagate in the network. A
change of a user’s opinion from, say, neutral to positive,
contributes to the overall distance between the corresponding
network states by reflecting the likelihood of this user’s opinion
change based on the opinions and locations of other users
in the network under a chosen opinion dynamics model.
However, since the users interact, the distance measure ought
to consider opinion shifts of all users simultaneously. Thus, we
design SND as a transportation problem that models opinion
propagation in the network. In particular, by making the
transportation costs dependent on both the network’s structure
and the opinions of the users conducting information in the
network, we capture the competitive aspect of polar opinion
propagation. The summary of our contributions is as follows:

. We propose SND—the first distance measure suitable for
the comparison of social network states containing competing
opinions under a chosen model of opinion dynamics.

. We develop a scalable method for exact computation
of SND in time linear in the number of network users.
This is achieved via exploiting the special structure of the
transportation problem underlying SND and the use of special
shortest path and minimum-cost network flow algorithms.

. We demonstrate the utility of SND at anomaly detection
and user opinion prediction in Twitter data.

II. NETWORK STATE COMPARISON
AND EARTH MOVER’S DISTANCE (EMD)

We propose to address the problem of comparing states of
a social network as a transportation problem. The two network
states under comparison define supplies and demands, and the
costs of opinion transportation are defined based on the shortest
paths between the users in the network.

This naturally leads us to one of the well-studied metrics—
Earth Mover’s Distance (EMD). Originally, defined as a dis-
similarity measure for image histograms [9], EMD can be used
for the comparison of network states viewed as histograms—
maps from the set of network users to the set of possible
user opinion values. Intuitively, EMD measures the costs of
optimal transformation of one histogram into another with
respect to the ground distance specifying the costs of moving
mass between bins. In our case, the ground distance will be
defined based on the shortest paths between the users of the
network, computed based on the network’s structure and the
opinions of the users facilitating opinion propagation.
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Fig. 1. Three histograms defined over the same two-cluster network.

Formally, given two histograms P ∈ R+n and Q ∈ R+m,
and ground distance D ∈ R+n×m, EMD is the solution to the
problem of optimal mass transportation from suppliers {Pi}
to consumers {Qj} w.r.t. transportation costs {Dij}:

EMD(P,Q,D) =

n∑
i=1

m∑
j=1

Dij f̂ij
/ n∑

i=1

m∑
j=1

f̂ij , (1)

n∑
i=1

m∑
j=1

fijDij → min,

n∑
i=1

m∑
j=1

fij = min
{ n∑

i=1

Pi,

m∑
j=1

Qj

}
,

fij ≥ 0,

m∑
j=1

fij ≤ Pi,

n∑
i=1

fij ≤ Qj , (1 ≤ i ≤ n, 1 ≤ j ≤ m).

where {f̂ij}n×m is an optimal solution (transportation plan).

Despite the appeal of EMD, it is limited in that it cannot
adequately compare histograms having different total masses—
it ignores the mass mismatch, treating a histogram with a very
small mass and any other histogram as almost identical. The
problem is particularly pronounced for social networks, where
different states of a social network usually have different total
mass due to neutral users’ acquiring positive or negative opin-
ions. In our full paper [3], we propose the Generalized Earth
Mover’s Distance (EMD?), that adequately compares network
states with different total mass. In particular, it improves upon
existing versions of EMD in that its histogram mass mismatch
penalty depends not only on the number of newly activated
users, but also on where these users reside in the networks.
The latter is achieved through “spreading” the mass mismatch
over the network, thereby, incorporating it into the structure
of the transportation problem.

To illustrate the difference of EMD? from existing versions
of EMD, consider the example in Fig. 1. There are three
histograms defined over the same network, which has two
pronounced clusters L and R connected by three bridge edges.
The distribution of mass over cluster L is identical in all three
histograms, while cluster R is empty in G1 and has some
differently distributed mass in G2 and G3. In G2 the extra mass
has been “propagated” from cluster L to cluster R through the
bridges, while in G3 the same amount of extra mass has been
randomly distributed over cluster R. Thus, if we assume that
G2 and G3 have “evolved” from G1 through a process of
mass propagation, then G2 should intuitively be closer to G1

than G3. However, only EMD? captures this intuition in that
EMD?(G1, G2) < EMD?(G1, G3), while for other EMDs, G2

and G3 are either equidistant from or identical to G1.

In the following section, we use EMD? to construct our
distance measure for network states containing polar opinions.

III. SOCIAL NETWORK DISTANCE (SND)
Given a network G = 〈V,E〉, where V (|V | = n) is the

set of nodes (users) and E is the set of edges (social ties),

we want to compute the distance between two of its states
P = [P1, . . . , Pn] and Q = [Q1, . . . , Qn], where Pi and Qi

are the opinions of the i’th user in states P and Q, respectively.
Prior to defining SND, we will make two assumptions:

. For a given pair of network states, the costs (or
likelihood) of opinion propagation depend only on the opinions
of the currently active users, taking no account of the potential
change of user opinions in the process of opinion transporta-
tion. This assumption, reasonable when the two network
states are not very far apart in time, allows us to use the
transportation problem as our model, since the transportation
costs are required to be static.

. We assume that the users adopting, say, opinion “+”
have been affected only by others having the same opinion
in the process of opinion propagation. Similarly, suppliers
only propagate opinions to the consumers of the same type.
This assumption allows to ask a question about the most
likely opinion propagation scenario for positive and negative
opinions separately, solving two independent transportation
problems, that share the same ground distance (which depends
on opinions of both types, capturing opinion competition).

The first assumption allows us to define the ground dis-
tance. The cost of opinion propagation from user u to user v
depends on their topological proximity, how frequently they
communicate, persuasiveness, and stubbornness of u and v
as well as the users “separating” them. Formally, the ground
distance D(Gi, op) ∈ R+n×n, reflecting the costs of propa-
gating opinion op through a network in state Gi, is a matrix
containing the lengths of the shortest paths computed in a
network with adjacency matrix

Aext(Gi, op) =

− log P(Gi, op)− log Pin(Gi, op)− log Pout(Gi, op), (2)

where the summands on the right are n-by-n matrices of
log-probabilities of communication, opinion adoption, and
opinion spreading, respectively. Communication probabili-
ties P(Gi, op) can be defined as the relative frequencies
of communication between users, provided that it is known
how often they actually interact. Opinion adoption proba-
bilities Pin(Gi, op) reflect users’ susceptibility/stubbornness.
The simplest way to define the opinion spreading penalties
− logPout(Gi, op) is in a model-agnostic fashion as follows.

− log Pout
uv (Gi, op) =


cadverse if Gi[u] = −op ∨Gi[v] = −op,
cneutral if Gi[u] = 0,

cfriendly if Gi[u] = op ∧Gi[v] 6= −op,

where cadverse, cneutral, cfriendly ∈ R+ are constant penalties
for spreading opinion op by the users having, respectively,
adverse, neutral, or friendly opinion relatively to op, and
Gi[u] is the opinion of user u in network state Gi. This
simple definition implies that users willingly spread opinions
similar to their own (cfriendly is small); are unwilling to
spread adverse opinions (cadverse is large); with neutral users’
behavior being somewhere in-between (cfriendly < cneutral <
cadverse). Alternatively, Pout(Gi, op) can be defined based on
any existing opinion dynamics model. In our full paper [3],
we provide such cost definitions based on the version of the
Independent Cascade [5] and the Linear Threshold [4] models
allowing for competing opinions.
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Finally, we can formally define SND.

SND(G1, G2) =
1
2
×[

EMD?(G+
1 , G+

2 , D(G1,+)) + EMD?(G−
1 , G−

2 , D(G1,−))+

EMD?(G+
2 , G+

1 , D(G2,+)) + EMD?(G−
2 , G−

1 , D(G2,−))],

(3)

where the users holding negative opinions are considered
neutral in G+

i , and the users holding positive opinions are
neutral in G−i . Notice that SND depends on both ground
distances D(G1, op) and D(G2, op). One reason for it is that
network states G1 and G2 may be time-unordered, and it
may be unknown which of two network states corresponds
to the past and defines the likelihoods of different opinion
propagation scenarios. Another reason for such a choice is
SND’s symmetry w.r.t. G1 and G2, which makes SND metric.

IV. EFFICIENT COMPUTATION OF SND
SND is defined (3) as a linear combination of several

instances of EMD?, and, thus, computation of SND involves:
. Computing the ground distance D(Gi, op) based on the

structure of the underlying network G = 〈V,E〉 (|V | = n,
|E| = m) and the opinions of the users in network state Gi.
. Computing EMD?, when the network states and the ground

distance are provided.
Computing the ground distance D implies computing short-

est paths, whose direct computation for all pairs of users
using Dijkstra’s algorithm would incur time cost O(n2 log n)
for sparse G. Computing EMD? is algorithmically equivalent
to computing EMD, and, since the latter is formulated as a
solution to a transportation problem, it can be computed either
using a general-purpose linear solver, such as Karmarkar’s
algorithm, or a solver that exploits the special structure of
the transportation problem, such as the transportation simplex
algorithm. The complexity of both algorithms is, however,
supercubic in n. Thus, the exact computation of SND using
existing techniques is prohibitively expensive at the scale of
real-world online social networks. Furthermore, the existing
approximations of EMD are either inapplicable to the com-
parison of histograms derived from a social network’s states,
since they either drastically simplify the ground distance, or
are effective only for some graphs, such as trees, structurally
not characteristic of social networks. Nevertheless, in what
follows, we propose a method to exactly compute SND in
time linear in n under the following two realistic assumptions.

Assumption 1: The number n∆ of users who change
their opinions between two network states G1 and G2 under
comparison is significantly smaller than the total number n of
users in the network. This assumption is reasonable, because
in most applications the network states under comparison are
not very far apart in time and, hence, n∆ � n.

Assumption 2: The opinion transportation costs, defined
as the elements of adjacency matrix Aext in (2), are positive
integers bounded from above by constant U � +∞ ∈ Z+.
This assumption is easy to satisfy by the appropriate choice
of costs, and does not limit our analysis.

As computing SND is equivalent to computing four in-
stances of EMD?, our focus here is on efficient computation
of EMD? on the inputs supplied by SND. Our method for
computing SND—given as Theorem 1 below—requires the
following lemma. The full proofs are provided in [3].
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Lemma 1. Given two arbitrary histograms P,Q ∈ Rn and a
ground distance D ∈ Rn×n, if D is semimetric (a metric with
symmetry requirement dropped), then for any i ∈ {1, . . . , n},
the following holds

EMD?(P,Q,D) = EMD?(

[P1, . . . , Pi−1, Pi −min {Pi, Qi}, Pi+1, . . . , Pn],

[Q1, . . . , Qi−1, Qi −min {Pi, Qi}, Qi+1, . . . , Qn], D).

Theorem 1. Under Assumptions 1 and 2, SND between net-
work states P = [P1, . . . , Pn] and Q = [Q1, . . . , Qn] defined
over network G = 〈V,E〉, (|V | = n, |E| = m) can be exactly
computed in time O(n∆(m+n

√
logU +n2

∆ log (n∆nU))). In
a sparse network, with bounded n∆, this time is O(n).

Proof Idea: SND has EMD? at its core, and here we
are concerned with the efficient computation of the latter. To
efficiently compute, say, EMD?(P+, Q+, D(P,+)), we, first,
apply Lemma 1 to P+ and Q+, whose effect is changing
the values of many bins in P+ and Q+ to zeros, without
affecting the value of EMD? between them. The latter is
beneficial, since zero bins are discarded from the underlying
transportation problem. As a result only one of P+ and Q+

still has the number O(n) of bins proportional to the number of
users in the network, while the other one’s number O(n∆) of
bins is proportional to the number of users whose opinions
are different in P+ and Q+ (and, due to Assumption 1,
n∆ � n). Thus, the computation of D(P,+) corresponds
to n∆ single-source shortest path computations, which, due
to Assumption 2, can be performed using Dijkstra algorithm
using a combination of a radix and Fibonacci heaps [1],
with time complexity Tsssp = O(m + n log

√
U); and the

computation of EMD?(P+, Q+, D(P,+)) accounts for solv-
ing an unbalanced (n∆ � n) transportation problem using
Goldberg-Tarjan’s min-cost flow algorithm [7] augmented with
the two-edge push rule of Ahuja et al. [2] in time Ttransp =
O(n∆m+n3

∆ log (n∆ maxi,j D(P,+)ij)). Thus, the total time
for computing EMD? and, hence, SND is T = O(n∆Tsssp +
Ttransp) = O(n∆(m+n log

√
U +n2

∆ log (n∆nU))). Observ-
ing that in a sparse network m = O(n) concludes the proof.

We have implemented SND in MATLAB and C++ (avail-
able at http://cs.ucsb.edu/˜victor/pub/ucsb/dbl/snd/).
We use the min-cost network flow solver CS2 [6] that im-
plements Goldberg-Tarjan’s algorithm [7], but, unlike it is
prescribed by Theorem 1, does not use the two-edge push
rule [2]. As a result, our implementation of SND scales slightly
worse than linearly as guaranteed by Theorem 1, but still very

http://ieeexplore.ieee.org/servlet/opac?punumber=1000178
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well to be applicable to real-world social networks. Fig. 2
shows how our implementation of SND based on Theorem 1
scales in the number n of users in the network in comparison
with a direct computation of SND using CPLEX’ linear solver.
Our implementation’s scalability in the number n∆ of users
who have changed their opinion is shown in Fig. 3.

V. EXPERIMENTAL RESULTS

A. Detecting Anomalous Network States

In a series of network states G1, G2, . . . , Gn, we want to
detect which network state transitions 〈Gi, Gi+1〉 are anoma-
lous in the sense of not following the expected opinion evolu-
tion. To this end, we compute the distances between adjacent
network states, normalize these distances by the number of
active users, and rescale to fit [0; 1]. Then, spikes in the
resulting series of distances are considered anomalies.

We analyze a subset of tweets from Twitter dataset [8]
sent between May-2008 and August-2011, containing hashtag
“Obama”, and connect users in a network based on their
follower-followee relationship. As a result, we obtain a net-
work of 10k users, each having an average of 130 neighbors.
Within each quarter, we quantify the sentiment of each tweet;
subsequently, the opinions of all the users comprise that
quarter’s network state. The “search interest” data from Google
Trends was used as the ground truth.

We compare the performance of SND at anomaly detection
with that of several other distance measures: Hamming dis-
tance, quadratic-form distance, and walk-distance (the average
amount by which the opinion of a user differs from the average
opinion of its active neighbor). The anomaly detection results
are shown in the following Figure.
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We can distinguish two types of events based on SND’s
behavior relatively to that of other distance measures. One
type is the polarizing events when SND noticeably disagrees
with the other distance measures. For example, during quar-
ters 05’09-11’09, the Economic Stimulus Bill had a highly
polarized response in the House of Representatives, with no
Republican voting in its favor. Another such anomaly takes
place during quarters 02’10-08’10, when the Affordable Care
Act (“Obama Care”) was introduced, and which still remains
a very controversial topic.

The other events are those where SND agrees with the
other distance measures. Three examples are (a) “election”, (b)
“Tax plan”, and (c) “bin Laden”. (a) The election of Barack
Obama as the President of the US, extensively covered by the
news media, had likely been accompanied by a very noticeable
change in the rate of new user activation, so, as expected,
SND, while indicating it as an anomaly, does not perform any

better at detecting that event than the simpler distance measures
sensitive to the user activation rate. The undetected by SND (b)
Obama’s tax cut extension and (c) bin Laden’s death, however,
were not polarizing—the tax cut had received large support
in the Senate from both the Democrats and the Republicans,
while bin Laden’s death has unlikely been perceived differently
by the US users of Twitter.

B. Predicting User Opinions

Given a series of states of a social network, we want
to predict the unknown opinions of individual users in the
current network state G0 based on the observed recent G−t
(t ∈ N) and the (incomplete) current network states. We
assume that during the periods corresponding to the observed
recent network states G−t, the network evolved “smoothly”,
so the recent past network states are informative of the current
network state. Under this assumption, we compute distances
dist(G−t, G−t+1) between adjacent past network states, then,
extrapolate the obtained series of distances to estimate the
distance d∗ from the most recent G−1 to the yet unknown
complete current network state. Then, we search for the as-
signment of opinions to the target users in the current network
state that would make the distance dist(G−1, G

∗
0) from the

most recent to the modified current network state as close
to estimate d∗ as possible. In each experiment, we uniformly
randomly select 20 active users—with equal representation of
positive and negative opinions—in the current network state,
predict their opinions and measure the prediction accuracy.
This procedure is repeated for different sets of active users,
and mean accuracies and standard deviations are reported. The
predictions are made using SND as well as other distance mea-
sures. The opinion prediction results are summarized below.

Distance Measure Opinion Prediction Accuracy, %
mean std

SND 75.63 5.60
hamming 68.13 5.80
quad-form 67.50 9.63
walk-dist 31.88 9.98
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