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Introduction

I Goal: Strategically recommend links to recover weighted
average user opinion from exogenous node-level attacks.

I Large directed strongly connected social network of n users
I W – interpersonal influence adjacency matrix (W1 = 1)
I x ∈ [0, 1]n, (x̃) – user opinions before (after) the attack
I π ∈ Rn – network nodes’ eigenvector centralities
I 〈π,x〉 – (weighted) average opinion

Problem Statement by Example
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Problem and Its Hardness

I Adversary’s Goal: Maximize 〈π, x̃〉 via altering x→ x̃

I Our Goal: Return 〈π̃, x̃〉 back to 〈π, x〉 via altering π → π̃
through edge addition. Single-edge (r, c) perturbation:
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I (NP-hard) Problem:

DIVER(W,k, x, x̃) = argmin
W̃
|〈π̃(W̃ ), x̃〉 − 〈π, x〉|,

where the perturbed W̃ differs from W by k new edges, we
cannot choose weight θij of an added edge (i, j).

General Solution for DIVER

DIVER(W,k, x, x̃) = argmin
W̃
|〈π̃, x̃〉 − 〈π, x〉|

I Method: reduce 〈π̃, x̃〉 through iterative edge addition
until it gets close enough to 〈π, x〉

〈π, x̃〉 − 〈π̃, x̃〉 → max

I Central Question: How does 〈π̃, x̃〉 change when a single
edge (r, c) with weight θrc is added to network W ?

Network Perturbation Analysis

I Adding a single edge to the network:

W̃ = W − θrc diag(er)W + θrcere
ᵀ
c

Theorem 1. Under single-edge perturbation of W with edge
(r, c) having weight θrc, the eigenvector centrality changes as
follows:

π̃j = πj

[
1− θrc(mcj · (1− δ{j, c})−mrj + 1)

mrr + θrc(mcr −mrr + 1)

]
,

where mij is the mean first passage time (MFPT) from state i
to state j of Markov chain W , and δ{·, ·} is Kronecker’s
delta. In particular,

π̃r =
1

mrr + θrc(mcr −mrr + 1)
,

π̃c = 1 + θrc ·
mrc − 1

mrr + θrc(mcr −mrr + 1)
.

Theorem 2. Under single-edge perturbation of W with edge
(r, c) having weight θrc, the weighted average opinion changes
as follows:

fπ(r, c) = 〈π, x̃〉 − 〈π̃, x̃〉

= θrc

n∑
j=1

πj(mcj · (1− δ{j, c})−mrj + 1)x̃j

mrr + θrc(mrc −mrr + 1)
.

How to solve DIVER in very large networks?

I Approach to DIVER: iteratively adding edges (r, c) with
top values fπ(r, c) until satisfied with the value of 〈π̃, x̃〉.

I Issue 1: There are O(n2) candidate edges in a sparse
network.

I Issue 2: How to efficiently compute fπ(r, c)?

I Evaluation of a single fπ(r, c) involves summation over O(n) terms.

I Direct computation of MFPTs mij would cost at least O(n3).

Efficient candidate edge selection

I Focus on O(n) candidate edges, outgoing from nsrc� n
nodes.

I Most good candidate edges emanate from a small number
of nodes.

I In hierarchical networks, these edge sources are
top-centrality nodes.

Efficient computation of fπ(r, c)

I In hierarchical networks, fπ is largely determined by a small
(nsrc) number of top-centrality nodes.

I We can estimate MFPTs via finite-time random walks; all
the MFPTs to and from nsrc top-centrality nodes converge
in O(n) time in practice.
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I Outcome: O(n)-time heuristic for DIVER for hierarchical
(scale-free-like) networks.

Solving DIVER

I Driving 〈π̃, x̃〉 − 〈π, x〉 to 0 by adding new edges:
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I DIVER: optimistic DIVER estimates fπ using all (not O(1))
top-centrality nodes;

I DIVER(fπ ∼ X%): estimates fπ using only fraction X of
top-centrality nodes;

I BASE(rnd): worst-case baseline, choosing edges uniformly randomly;

I BASE(θrc(πr − πc)(x̃r − x̃c)) – smarter baseline that relies only on
absolute centrality πi, as well as edge weights θrc, and user opinions x̃i.
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