
  

CS32 Summer 2013

 

Intro to Object-Oriented Programming in C++

Victor Amelkin
 

August 12, 2013



  

History

Martin
Richards

 BCPL
(1966)

Ken
Thompson

 B
(1970)

Dennis
Ritchie

 C
(1972-...)

Bjarne
Stroustrup

 C++
(1979-...)

C++98
C++03
C++TR1 ('07)
C++11

C89
C90
C99
C11



  

Object-Oriented Programming

● Real word consists of objects
– car, head, spoon, ...

● Objects have states
– car { nwheels = 4, current_gear = 2, color = red }

● Objects act
– car.start()
car.drive(destination)
car.crash_into(“nearby tree”)

● We want our programs to reflect the real world

We want to write our programs in terms of
objects, their state and behavior



  

Objects in C: State

● Predefined C types (int, double, ...) are not sufficient to 
represent object states
– int car_state – does not describe a car's state close enough

● Gather multiple variables in a structure
– struct car_state {

int n_wheels;
int n_seats_available;
double max_speed_mph;
…

}
car_state car1;
car1.n_wheels = 3;
...

● What about object's behavior?



  

Objects in C: Behavior
● struct car_state {

int n_wheels;
int n_seats_available;
double max_speed_mph;
…

}

● In C, object's behavior is “externally defined”:

void add_passenger(car_state *c, person *p) {
…
c->nseats_available -= 1;

}

● No protection: anyone can alter car_state's fields.



  

Better Objects

● Restrict access to objects' fields

● Allow only “trusted” functions to alter the state
– In C, we cannot allow only some functions to 

access the object's state

● We want objects to incorporate both their state 
and behavior



  

User-Defined Types in C++: Classes
class date {
    private:
        int _day, _month, _year;
    public:
        date(int day, int month, int year) {
            _day = day;
            _month = month;
            _year = year;
        }
        void print() {
            printf("%d-%d-%d\n", _day, _month, _year);
        }
};

int main() {
    date dt(12, 8, 2013);
    dt.print();

 // dt._day = 123; – does not work!
    return 0;
}



  

User-Defined Types in C++: Classes
● C++ classes describe both

– state through fields

– and behavior though methods

● Class' fields and methods – class members

● Object of class MyClass – instance of MyClass

● Access control to members (public/private)

● No need to use struct in C++ (but some people do for POD-types)

– In C++, struct ~= class

– struct's members are public by default

– class's members are private by default



  

Access Control

● Class members can be private or public
– In future, we will add protected members

class MyClass {
private:

int field1;
float field2;

public:
char field3;

private:
method1() { field1 = 1; field3 = 'w'; /*OK*/ }

public:
method2() { field2 = 1; field3 = 'a'; /*OK*/ }

};

MyClass obj; // obj is an “instance” of class MyClass
obj.field1 = 1; // does not work!
obj.field3 = 'A'; // OK
obj.method1(); // does not work!
obj.method2(); // OK



  

Object Construction
● Constructor – a method that initializes the state of an object

● Constructor is named as its class

● Class may have multiple constructors with different signatures

class date {
private:

int _day, _month, _year;
public:

date();
  date(int day, int month, int year);

date(const char *datestr);
};

date d1; // using the first ctor
date d2(29, 8, 1985); // using the second ctor
date d3(“29-08-1985”); // using the third ctor



  

Other Methods
● Constructors initialize the state of an object

● Other methods can change an object's state too

class date {
private:

int _day, _month, _year;
public:

void add_day();
bool is_end_of_month();
bool is_end_of_year();

};
 

void date::add_day() {
if(is_end_of_month()) {

day = 1; // or this->day = 1
if(is_end_of_year()) {

_month = 1;
_year++;

} else
_month++

} else
_day++;

}

MyClass *this – hidden 
argument internally passed
to each (non-static) member



  

Creating Objects
● Memory allocation for class' objects is similar to C structs:

– Object creation on the stack:

date dt1;
date dt2(1, 12, 2011);
dt1.print();
// dt1, dt2 disposed automatically

– Object creation in the heap:

date *dt1 = new date();
date *dt2 = new date(1, 12, 2011);
dt1->print();
delete dt1;
delete dt2;



  

Re-Creating Objects?
● Never attempt to re-create objects

date dt(12, 8, 2013);
dt.~date();
new (&dt) date(1, 2, 3);
dt.print();

● Constructor is called only once at the moment of creation

● Need to re-initialize an object?

– either use a custom assign/initialize member

date dt(12, 8, 2013); // want to change this object
dt.assign(1, 2, 3); // assigns values to the fields
dt.print(); // prints 1-2-3

– or create a new object

date dt(12, 8, 2013);

dt = date(1, 2, 3);

- NOT COOL!



  

Object Destruction
● Destructor – a method that is called before an object dies

● Destructor is named as its class with ~ prefix

● Class may have only one destructor

class date {
private:

int _day, _month, _year;
public:

  date(int day, int month, int year); // ctor
~date(); // dtor

};

// 1) memory is allocated
// 2) ctor is called
date *pd = new date(29, 8, 1985);

// 3) destructor is called
// 4) memory is released
delete pd;



  

Interface vs. Implementation

● Definitions of methods are (usually) separated from declarations

class date {
private:

int _day, _month, _year;
public:

// Declarations (“interface”)
  date(int day, int month, int year);

print();
};

// Definitions (“implementation”)

date::date(int day, int month, int year) {
    _day = day;
    _month = month;
    _year = year;
}

void date::print() {
    printf("%d-%d-%d\n", _day, _month, _year);
}



  

Separate Compilation: Motivation
// date.cpp
class date {

private:
int _day, _month, _year;

public:
  date(int day, int month, int year);

print();
};

date::date(int day, int month, int year) {
    _day = day;
    _month = month;
    _year = year;
}

void date::print() {
    printf("%d-%d-%d\n", _day, _month, _year);
}

// user1.cpp
date dt1(1, 3, 1999);

// user2.cpp
date dt2(12, 8, 2013);



  

Separate Compilation: Motivation

// user1.cpp

// declaration
class date {

public:
  date(int day, int month, int year);

print();
};
// usage
date dt1(1, 3, 1999);

// user2.cpp

// declaration
class date {

public:
  date(int day, int month, int year);

print();
};
// usage
date dt2(12, 8, 2013);

● In C++, before using something, it should be declared

● Bad solution:

What will happen to user1.cpp and 
user2.cpp if we decide to change 
the signature of the constructor? 
(Hint: lots of code rewriting.)



  

Separate Compilation
// date.h – header file – contains declarations (“interface”)
class date {

private:
int _day, _month, _year;

public:
  date(int day, int month, int year);

print();
};

// date.cpp – implementation file – contains definitions
#include “date.h”
date::date(int day, int month, int year) { … }
date::print() { … }

// user.cpp
#include “date.h”
date dt1(1, 3, 1999);

// user2.cpp
#include “date.h”
date dt2(12, 8, 2013);



  

Header Files
● Header files (“headers”) are named {name}.h
● Headers contain declarations of classes, functions, global vars

● Header may contain declarations for multiple classes

● Member implemented inside a header gets inlined (“one definition rule”)

● Use #include guards to prevent double inclusion of a header

// my_header.h
#ifndef __MY_HEADER_H__
#define __MY_HEADER_H__

… header contents (included only once) …

#endif // __MY_HEADER_H

// user1.h
#include “my_header.h”

// user2.h
#include “user1.h”
#include “my_header.h”



  

Chaining Constructors
in pre-C++11

● Class may have multiple constructors
● These constructors may want to share some code

car::car(color) {
_color = color;
init_engine();
init_gps();

}

car::car(color, nwheels, owner) {
_color = color;
_nwheels = nwheels;
_owner = owner;
init_engine();
init_gps();

}

● Can we “call” the first ctor from the second?



  

Chaining Constructors
in pre-C++11

● Can we “call” the first ctor from the second ctor?
car::car(color) {

_color = color;
init_engine();
init_gps();

}

car::car(color, nwheels, owner) {
call car(color) for the current object
// _color = color;
_nwheels = nwheels;
_owner = owner;
// init_engine();
// init_gps();

}

● In C++98, we cannot do it directly (in C++11 we can)



  

Chaining Constructors
in pre-C++11

● Solution: extract an initializing method

car::car(color) {
init(color);

}

car::car(color, nwheels, owner) {
init(color);
_nwheels = nwheels;
_owner = owner;

}

// just a regular method (usually named init or assign)
car::init(color) {

_color = color;
init_engine();
init_gps();

}



  

Copy Constructor
● Objects are initialized with constructors

● Copy constructor – special constructor used for creating a 
copy of an existing object; default copy constructors are 
created automatically

class date {
private:

int _day, _month, _year;
public:

// Default copy ctors defined automatically
  // date(date &other); // copy ctor

// date(const date &other); // copy ctor
};

// Default semantics of copy ctors – memberwise copy

date dt1;
const date dt2;
date dt3(dt1); // copy ctor is called
date dt4(dt2); // const copy ctor is called



  

Copy Constructor
● We need an explicitly defined copy ctor to make

a deep copy (i.e., follow pointers)
class myclass {

private:
int x;
char *p;

public:
 // Default copy ctors will copy pointer p, so 

    // that all copies will point to the same string
       myclass(const myclass &other);
};

// creating a deep copy
myclass::myclass(const myclass &other) {

x = other.x;
int len = strlen(other.p);
p = new char[len + 1];
strcpy(other.p, p, len);

}



  

Assignment Operator
● Similar to copy ctor (defaults created automatically)

class MyClass {
private:

int state;
public:

       // MyClass& operator=(const MyClass &other);
// MyClass& operator=(MyClass &other);

};

MyClass x;
MyClass y;
x = y; // assignment operator is called

● As with copy ctors, default semantics – memberwise copy



  

Summary
● Class describes state and behavior of its objects

– fields

– methods
● Access to members: private / public

● Class' interface and implementation are usually separated

– interface (declarations): myclass.h

– implementation (definitions): myclass.cpp
● Constructors initialize class' objects

● Destructor may release some acquired resources

● Copy constructors and assignment operators
are used for copying objects



  

Object Life-Cycle Demo

● Want a class with all of the following:

– Fields

– Regular methods

– Constructors
● default ctor
● constructors accepting arguments
● copy ctors

– Destructor

– Assignment operators



  

Object Life-Cycle Demo
// xstring.h
class xstring {

private:
    int _length;
    char *_chars;

public:
    xstring();
    xstring(const int length, const char filler);
    xstring(const char *str);
    xstring(const xstring &other);
    ~xstring();

    xstring& operator=(const xstring &other);

    void clear();
    int get_length() const;
    void print() const;

private:
    void init(const char *other);
};



  

Object Life-Cycle Demo

● http://cs.ucsb.edu/~victor/ta/cs32/lect-aug-12/ex/

● Example index:

– main1.cpp – default ctor; stack
– main2.cpp – paramed ctor; stack

– main3.cpp – paramed ctor; heap

– main4.cpp – copy ctor; stack
– main5.cpp – heap; memory leak; valgrind

– main6.cpp – assignment op; stack
– main7.cpp – assignment op; heap

– main8.cpp – unnecessary objects

– main9.cpp – ultimate wisdom; gdb

http://cs.ucsb.edu/~victor/ta/cs32/lect-aug-12/ex/


  

Questions?


