

CS32 Summer 2013

Object-Oriented Programming in C++

RTTI, Advanced Inheritance, Intro to Templates

Victor Amelkin

September 4, 2013

Plan for Today

● Alternatives to Virtual Functions

– type fields
– dynamic_cast and RTTI

● Pure Virtual Functions and Abstract Classes
● Multiple Inheritance
● Intro to Templates

– mainly, the topic of the last week

Alternatives to Virtual Functions

● In C++ we cannot tell the actual type of an object
a pointer / reference points to (unless we do
something special)

Base *pobj = get_object_addr();
// pobj may point to Base or any its derivative

● What to do with it:
– The Good: live in ignorance and use virtual functions

(do not need to know the actual type of an object; the
proper implementations of virtual functions are called
based on the info from the virtual table)

– The Bad: introduce “type field”

– The OK: use dynamic_cast<T> and typeid (RTTI)

Type Field
● “Type field” is a field dedicated to keeping information about the type of

every object
// http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/type-field.cpp
class shape {
protected:
 string _type_name;
public:
 void draw() {
 if(_type_name == "triangle") {
 cout << "..drawing triangle..";
 } else if(_type_name == "circle") {
 cout << "..drawing circle..";
 } …
 } else { cout << “ERROR: unexpected type”; } // – new types may appear
 }
};

class triangle : public shape {
public:
 triangle() : _type_name(“triangle”) { }
};

● Does not always work (what if class shape does not know how to draw
a triangle?)

● Problems with extending (what if we need to add class rhombus, but we
cannot change code of class shape as it is compiled in .so/.dll?)

http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/type-field.cpp

Preliminaries on C++-Style Casts
● C-Style casts – same syntax for semantically different

casts
T var = (T)other;
T *pvar = (T*)pother;

● C++-Style casts:

static_cast<T> – used when the type is known
void doit(base *pobj) {
 // we know that pobj points to derived
 derived *pd = static_cast<derived*>(pobj);
}

dynamic_cast<T> – used when exact type is unknown
void doit(base *pobj) {
 if(derived *pd = dynamic_cast<derived*>(pobj))
 pd->some_advanced_method();
}

const_cast<T> – used to remove const'ness (bad idea)

reinterpret_cast<T> – allows treating car as a cow

RTTI: dynamic_cast<T> and typeid
● Run-Time Type Info: Compiler can include type information –

something like type field – in each object. (g++ enables RTTI by
default.) Consequently, we have the following two constructions:

– dynamic_cast<T> – try to cast to T; if cannot cast, return NULL

void doit(base *pobj) {
 if(derived *pd = dynamic_cast<derived*>(pobj))
 pd->some_advanced_method();
}

– typeid – like a type field

// http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/rtti.cpp
class shape {
public:
 virtual void dummy(){} // typeid works only for polymorphic classes
 void draw() {
 // name() returns const char* "{name_length}{name}"
 string type = typeid(*this).name();
 if(type == "8triangle") { cout << "..drawing triangle.."; }
 else if(type == "6circle") { cout << "..drawing circle.."; }
 // …
 else { cout << "Error: type not recognized"; }
 }
};

http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/rtti.cpp

RTTI: dynamic_cast<T> and typeid

● Use case: polymorphic partial assign
// http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/polyasgn.cpp
class derived : public immediate_base {
public:
 void assign(const deepest_base *pother) /* override */ {
 // try to copy base state
 immediate_base::assign(pother);

 // try to copy current-level state
 const derived *pother_derived =
 dynamic_cast<const derived*>(pother);

 // if pother is of type derived
 if(pother_derived) {
 // copy pother's state's part declared in derived
 _c = pother_derived->_c;
 _d = pother_derived->_d;
 }
 }
};

http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/polyasgn.cpp

Abstract Classes and Pure Virtual Functions

● We may not know how to implement a virtual method in a base class

class shape {
public:
 virtual void draw() const {
 /* do not know how to draw an abstract shape */
 }
};

class triangle : public shape {
public:
 void draw() const { /* know how to draw a triangle */ }
};

– An empty virtual method does not enforce its implementation by the derived
classes (can enforce in runtime, by throwing exceptions, but we strive for
compile-time error checking)

● Sometimes we want to inherit only interface, not implementation
(C++ does not have interfaces in Java/C# sense)

 “interface” IDrawable {
 void draw() const;
 void resize(const rectangle &frame_to_fill);
 }

Abstract Classes and Pure Virtual Functions

● Pure virtual function – a virtual function without implementation

class shape {
public:
 virtual void draw() const = 0;
 virtual ~shape() { }
 void some_implemented_method() { … }
};

class pretty_shape : public shape {
 /* still have no idea how to draw() */
}

class triangle : public pretty_shape {
public:
 void draw() const { /* drawing triangle */ }
};

● Class having at least one pure virtual function is abstract

● Abstract classes cannot be instantiated

● Class having no pure virtual functions is concrete

Abstract Classes and Pure Virtual Functions

● C++ Interfaces = abstract classes consisting of pure virtual
functions (and, usually, an empty virtual destructor)

class IPlugin { // an interface for a browser plugin
public:
 virtual string plugin_name() = 0;
 virtual bool activate(context *pcontext) = 0;
 virtual void run() = 0;
 virtual ~IPlugin() { } // the only “impurity”
};

class YoutubeDownloaderPlugin : public IPlugin {
 /* implements methods of IPlugin */
};

IPlugin *pplugin = new YoutubeDownloaderPlugin(...);
firefox_connector.add_plugin(pplugin);

● If a class is derived from an interface class (“interface”), we
usually say that the class implements that interface

● Class may implement many interfaces (see multiple inheritance)

Intermezzo: Composition vs. Inheritance

● Inheritance (“is-a”) – extending classes of similar nature

class vehicle { … };
class car : public vehicle { … };
class delorean : public car { … };

● Composition (“has-a”) – extending classes with members of possibly
different nature

class car {
private:
 engine &_engine;
 list<passenger*> _passengers;
}

● Composition is better in that classes do not share their internals with
derived classes (unless you decide to never use protected members)

● Composition is used more often than inheritance

● Prefer (relatively) small classes with clear responsibilities to “fat”
classes that do everything; combine small classes using composition

● “Flat” classes may be preferred when for remote calls

Multiple Inheritance

● Multiple Inheritance – class derivation from more than one
base class

// http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/multinher.cpp

class Vehicle { … };

class Mechanism { … };

class IDrivable { … };

class Car :
public Vehicle,
protected Mechanism,
public IDrivable { … }

● Interface and implementation are inherited from each base

http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/multinher.cpp

Problems of Multiple Inheritance

● Member collision and ambiguity resolution

// http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/miar.cpp

class base1 {
public:

virtual void print() const { … }
};

class base2 {
public:

virtual void print() const { … }
};

class derived : public base1, public base2 { };

derived obj;
obj.print(); // error: request for ‘print’ is ambiguous
obj.base2::print(); // ok (calling base2's print impl)

http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/miar.cpp

Problems of Multiple Inheritance

● Cyclic inheritance graph (simplest cycle – diamond):
// http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/diamond.cpp

http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/diamond.cpp

Problems of Multiple Inheritance

● By default, repeated base class is replicated

Problems of Multiple Inheritance

● To prevent replication, virtual base classes are used
// http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/virtbase.cpp

http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/virtbase.cpp

Multiple Inheritance

● There are many other problems with multiple inheritance

● That is why multiple inheritance is deliberately not included
in Java and C# (exception – inheriting multiple interfaces)

● Safe uses of multiple inheritance in C++:

– Implementing interfaces

– Mix-in classes (– do not live on their own)
class uncopyable { // ← mix-in class
protected:

uncopyable() { }
private:

uncopyable(const uncopyable &other);
uncopyable& operator=(const uncopyable &other);

};

class myclass : …, public uncopyable { … }

myclass obj1;
myclass obj2(obj1); // compile-time error

Templates

● C++ templates allow to write generic code using types and
values as parameters

template<typename TChar>
class String {
private:

TChar *pchars;
int len;

public:
 String();
 explicit String(const TChar *src);

String(const String &other);
 TChar& operator[](int i) { return pchars[i]; }

...
};

using PlainString = String<char>;

PlainString plain_str;
String<wchar_t> unicode_str;
String<bool> boolean_str;

Templates

● Each time a template is used with a unique set of template
arguments, a new class is generated by the compiler

// 3 different versions of class String are generated
String<char> plain_str;
String<wchar_t> unicode_str;
String<bool> boolean_str;

● This generating process is called template instantiation

● Each such class generated for a particular template
argument list is called template specialization

vector<car> myvec; // instantiating vector<T>

Templates and STL – next week

Before you leave...

● PA4 – due Thursday night

● PA5 will be released Thursday late afternoon

– due: in ~7-8 days (TBA)

● TA Evaluations

~ Thanks ~

