CS32 Summer 2013

Object-Oriented Programming in C++
RTTI, Advanced Inheritance, Intro to Templates

Victor Amelkin
September 4, 2013

Plan for Today

e Alternatives to Virtual Functions

- type fields
- dynamic_cast and RTT]
 Pure Virtual Functions and Abstract Classes

* Multiple Inheritance
* Intro to Templates
- mainly, the topic of the last week

Alternatives to Virtual Functions

* |In C++ we cannot tell the actual type of an object
a pointer / reference points to (unless we do
something special)

Base *pobj = get object addr();
// pobj may point to Base or any its derivative

 \What to do with it:

- The Good: live in ignorance and use virtual functions
(do not need to know the actual type of an object; the
proper implementations of virtual functions are called
based on the info from the virtual table)

- The Bad: introduce “type field”
- The OK: use dynamic_cast<T> and typeid (RTTI)

Type Field

» “Type field” is a field dedicated to keeping information about the type of

every object

// http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/type-field.cpp
class shape {

protected:
string type name;
public:
void draw () {
1f(type name == "triangle") ({
cout << "..drawing triangle..";
} else 1f(type name == "circle") {
cout << "..drawing circle..";

b
} else { cout << “ERROR: unexpected type”; } // - new types may appear

}
b

class triangle : public shape {
public:
triangle() : type name (“triangle”) { }

I
« Does not always work (what it class shape does not know how to draw
a triangle?)
e Problems with extending (what if we need to add class rhombus, but we
cannot change code of class shape as it is compiled in .so/.dll?)

http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/type-field.cpp

Preliminaries on C++-Style Casts

o C-Style casts — same syntax for semantically different
casts

T var = (T)other;
T *pvar = (T*)pother;

o C++-Style casts:

static cast<T> — used when the type is known

voilid doit (base *pobj) {
// we know that pobj points to derived
derived *pd = static cast<derived*> (pobj);
}

dynamic cast<T> — used when exact type is unknown

vold doit (base *pobj) {
if (derived *pd = dynamic cast<derived*> (pobj))
pd->some advanced method() ;

)
const cast<T> — used to remove const'ness (bad idea)

reinterpret cast<T> — allows treating car as a cow

RTTI: dynamic_cast<T> and typeid

 Run-Time Type Info: Compiler can include type information —
something like type field — in each object.
Consequently, we have the following two constructions:

- dynamic cast<T>

void doit (base *pobj) {
if (derived *pd = dynamic cast<derived*> (pobj))
pd->some advanced method() ;

- typeid

// http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/rtti.cpp
class shape {
public:
virtual void dummy () {} // typeid works only for polymorphic classes
volid draw () {
// name () returns const char* "{name length}{name}"
string type = typeid(*this) .name () ;
if(type == "8triangle") { cout << "..drawing triangle.."; }
else if (type == "bcircle") { cout << "..drawing circle.."; }
/] ..

else { cout << "Error: type not recognized"; }

http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/rtti.cpp

RTTI: dynamic_cast<T> and typeid
* Use case: polymorphic partial assign

// http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/polyasgn.cpp
class derived : public immediate base {
public:

volid assign(const deepest base *pother) override
immediate base::assign(pother);
const derived *pother derived =
dynamic cast<const derived*> (pother);
1f (pother derived) {

c = pother derived-> c;
d = pother derived-> d;

{

http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/polyasgn.cpp

Abstract Classes and Pure Virtual Functions

« We may not know how to implement a virtual method in a base class

class shape {
public:
virtual void draw () const {
/* do not know how to draw an abstract shape */

}
Y

class triangle : public shape {

public:
void draw() const { /* know how to draw a triangle */ }

I
- An empty virtual method does not enforce its implementation by the derived
classes

« Sometimes we want to inherit only interface, not implementation

interface” IDrawable {

vold draw () const;
vold resize(const rectangle &frame to fill);

Abstract Classes and Pure Virtual Functions

« Pure virtual function — a virtual function without implementation
class shape {

public:
virtual voilid draw () const = 0;

Y

class pretty shape : public shape

}

class triangle : public pretty shape ({

public:
volid draw () const { }

i
» Class having at least one pure virtual function is abstract

 Abstract classes cannot be instantiated
« Class having no pure virtual functions is concrete

Abstract Classes and Pure Virtual Functions

« C++ Interfaces = abstract classes consisting of pure virtual
functions

class IPlugin {

public:
virtual string plugin name() = 0;
virtual bool activate (context *pcontext) = 0;
virtual void run() = 0;
virtual ~IPlugin() { }

Y

class YoutubeDownloaderPlugin : public IPlugin {
/* implements methods of IPlugin */

b

ITPlugin *pplugin = new YoutubeDownloaderPlugin(...);
firefox connector.add plugin(pplugin);

e |f a class is derived from an interface class . we
usually say that the class implements that interface

« Class may implement many interfaces

Intermezzo: Composition vs. Inheritance

Inheritance — extending classes of similar nature

class vehicle { .. };
class car : public vehicle { .. };
class delorean : public car { .. };

Composition — extending classes with members of possibly
different nature

class car {

private:
engine & engine;
list<passenger*> passengers;

}

Composition is better in that classes do not share their internals with
derived classes

Composition is used more often than inheritance

Prefer (relatively) small classes with clear responsibilities to “fat”
classes that do everything; combine small classes using composition

Multiple Inheritance

* Multiple Inheritance — class derivation from more than one
base class

// http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/multinher.cpp

class Vehicle { .. };
class Mechanism { .. };
class IDrivable { .. };

class Car :
public Vehicle,
protected Mechanism,
public IDrivable { .. }

* |nterface and implementation are inherited from each base

http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/multinher.cpp

Problems of Multiple Inheritance

 Member collision and ambiguity resolution

// http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/miar.cpp

class basel {
public:
virtual void print () const { .. }

b

class base?2 {
public:
virtual void print () const { .. }

b

class derived : public basel, public base2 { };

derived obj;
obj.print(); // error: request for ‘print’ is ambiguous

obj.base2::print(); // ok (calling base2's print impl)

http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/miar.cpp

Problems of Multiple Inheritance

* Cyclic inheritance graph (simplest cycle — diamond):

// http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/diamond. cpp

Animal

pll

Horse [:] Bird

}Pegasus

http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/diamond.cpp

Problems of Multiple Inheritance

» By default, repeated base class is replicated

= =
J G

Pegasus

Problems of Multiple Inheritance

* To prevent replication, virtual base classes are used

// http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/virtbase.cpp

Animal

pll

Horse

Bird

NN

Pegasus

/]

http://cs.ucsb.edu/~victor/ta/cs32/disc5/code/virtbase.cpp

Multiple Inheritance

 There are many other problems with multiple inheritance

 That is why multiple inheritance is deliberately not included
iIn Java and C#

« Safe uses of multiple inheritance in C++:

- Implementing interfaces
- Mix-in classes (— do not live on their own)

class uncopyable {
protected:
uncopyable () { }

private:
uncopyable (const uncopyable &other);
uncopyable& operator=(const uncopyable &other);

i
class myclass : .., public uncopyable { .. }

myclass objl;
myclass obj2(objl); // compile-time error

Templates

 C++ templates allow to write generic code using types and
values as parameters

template<typename TChar>
class String {
private:
TChar *pchars;
int len;
public:
String () ;
explicit String(const TChar *src);
String (const String &other);
TChar& operator|[] (int 1) { return pchars[i]; }

Y
using PlainString = String<char>;
PlainString plain str;

String<wchar t> unicode str;
String<bool> boolean str;

Templates

 Each time a template is used with a unique set of template
arguments, a new class is generated by the compiler

// 3 different versions of class String are generated
String<char> plain str;

String<wchar t> unicode str;

String<bool> boolean str;

* This generating process is called template instantiation

 Each such class generated for a particular template
argument list is called template specialization

vector<car> myvec; // instantiating vector<T>

Templates and STL — next week

Before you leave...

 PA4 — due Thursday night

* PAS will be released Thursday late afternoon
- due: in ~7-8 days (TBA)

 TA Evaluations

~ Thanks ~

