CS32 Summer 2013

Object-Oriented Programming in C++
Inheritance

Victor Amelkin
August 29, 2013

Plan for Today

 Inheritance: State, Implementation, Interface
* Accessing Base

» Construction and Destruction

» Slicing

* Polymorphism and Virtual Functions

Inheritance of State

» Classes may share a great deal of their internals (their state, in particular)

class HighSchoolStudent {
private:
char * full name;
time t dob;
char * ssny;

b

class UniversityStudent ({
private:

char * full name;

time t dob;

char * ssn;

char * perm;

char * major;

int advisor 1id;

b

« Can we describe the part classes share only once?

Inheritance of State

e Solution: derive one class from another

class HighSchoolStudent {

private:
char * full name;
time t dob; — “base class for UniversityStudent”

char * ssn;

by

class UniversityStudent : public HighSchoolStudent {
private:
char * perm;
char * major; — “class derived from HighSchoolStudent”
int advisor id;

};

Inheritance of State

e Solution: derive one class from another

1 HighSchoolStudent
class nN1gnoCnoo uaen { HighSchoolStudent

private:
char * full name; _full name (4 bytes)
. — f‘ _dob (4 bytes)
time t dob; - (4 bytes)

char * ssn;

}

class UniversityStudent : public HighSchoolStudent {
private:

char ©_perm; UniversityStudent
char * major;
int advisor id; _full name (4 bytes)
o - _dob (4 bytes)
i _ssn (4 bytes)
_perm (4 bytes)
_major (4 bytes)
_advisor 1id (4 bytes)

Accessing Base State

e Derived class cannot access private members of its base class

class HighSchoolStudent {
private:
char * full name;
time t dob;
char * ssn;
public:
vold print () const;

Y

class UniversityStudent : public HighSchoolStudent {

private:
char * perm;
char * major;
int advisor id;

public:
vold mymethod () {
print (); // ok; member print() is public

~dob = 12345; // error; dob is private

}
s

Accessing Base State

« Making private members public is a bad idea
« \WWe can make a member protected:

class HighSchoolStudent {

private:
char * full name;

char * ssn;

protected:

time t dob;
public:

volid print () const;

s

class UniversityStudent : public HighSchoolStudent {

private:
char * perm;
char * major;
int advisor 1id;
public:
vold mymethod () {
~dob = 12345; // ok; dob is protected

}
b

Accessing Base State

* Protected is better than public

* Rules for choosing access specifiers:

- Never give direct access to class' state to anyone; fields
should always be private

- If “the outside” needs to access class' internals, provide a
public method

- |f a derived class needs to access class' internals, provide
a protected method

- Never make anything public if it can
live fine as private or protected

e Be conservative!

Accessing Base State

class HighSchoolStudent {
private:

char * full name;

time t dob;

char *ssn;
protected:

void set dob(time t dob) { ..}
public:

time t get dob() const { ..}

b

class UniversityStudent public HighSchoolStudent {

private:

char * perm;

char * major;

int advisor id;
public:

vold mymethod () {

set dob(12345); // ok; set dob(time t) is protected
}
bi

UniversityStudent st;
time t dob = st.get dob(); // ok; get dob() is public
st.set dob(333); // error; set dob(time t) is protected

Inheritance of Implementation

* Behavior (“implementation”) is also inherited

class HighSchoolStudent {

private:
time t dob;
public:
time t get dob () const { .. }

Y

class UniversityStudent : public HighSchoolStudent {

Y

HighSchoolStudent sl1;
UniversityStudent s2;
bool same dob = sl.get dob() == s2Z2.get dob();

Inheritance of Interface

» Objects of derived classes can be treated as objects of
base classes

class HighSchoolStudent {

public:
time t get dob() const { .. }

b

class UniversityStudent : public HighSchoolStudent {

s

// pstud will point to an object of class UniversityStudent
HighSchoolStudent *pstud = new UniversityStudent(...);

pstud->get dob () ;

Public/Protected/Private Inheritance

» Types of inheritance differ in how access specifiers are inherited

class Base {
private: int private member;
protected: int protected member () ;
public: int public member();

b

class DerivedPublic : public Base {
// private member is not accessible here
// protected member () is protected here
// public member () is public here

b

class DerivedProtected : protected Base {
// private member is not accessible here
// protected member () is protected here
// public member () is protected here

Y

class DerivedPrivate : private Base {
// private member is not accessible here
// protected member () is private here
// public member () is private here

b

Inheritance and Construction

Base Class

' “Bottom-up”

Class Derived from Base Class construction

Bjarne Stroustrup draws his class

diagrams with derived classes above
and base classes below. Hence the
v name “bottom-up” construction.

Class Derived from Derived Class

Inheritance and Construction

Demo: nttp://cs.ucsb.edu/~victor/ta/cs32/disc4/code/constr.cpp

class Classl {

Classl () { cout << "Classl default ctor called.\n"; }
Classl (int 1) {
cout << "Classl ctor(int " << 1 << ") called.\n";
}
}s

class Class? : public Classl {

Class?2 () { cout << "Class?2 default ctor called.\n"; }
Class? (char c) {
cout << "Class2 ctor(char "" << ¢ << "'") called.\n";
}
};

class Class3 : public Class2 {

Class3() : Class2('x") {
cout << "Class3 default ctor is called.\n";
}
}s

http://cs.ucsb.edu/~victor/ta/cs32/disc4/code/constr.cpp

Inheritance and Construction

Classl obj;
>> Classl default ctor is called.

class Classl {

Classl () { cout << "Classl default ctor called.\n"; }
Classl (int 1) {

cout << "Classl ctor(int " << 1 << ") called.\n";

}
s

class Class?2 : public Classl {

Class2 () { cout << "Class2?2 default ctor called.\n"; }
Class” (char c) {

cout << "Class2 ctor(char '"" << ¢ << "'") called.\n";
}
}s

class Class3 : public Class? {

Class3() : Class2('x") {
cout << "Class3 default ctor is called.\n";

Inheritance and Construction

Classl obj2(123);
>> Classl ctor(int 123) 1is called.

class Classl {

Classl () { cout << "Classl default ctor called.\n"; }
Classl (int 1) {

cout << "Classl ctor(int " << 1 << ") called.\n";

}
s

class Class?2 : public Classl {

Class2 () { cout << "Class2?2 default ctor called.\n"; }
Class” (char c) {

cout << "Class2 ctor(char '"" << ¢ << "'") called.\n";
}
}s

class Class3 : public Class? {

Class3() : Class2('x") {
cout << "Class3 default ctor is called.\n";

Inheritance and Construction

Class? obj3;
>> (Classl default ctor i1s called.
>> (Class? default ctor 1s called.

class Classl {

Classl () { cout << "Classl default ctor called.\n"; }
Classl (int 1) {

cout << "Classl ctor(int " << 1 << ") called.\n";
}
s

class Class?2 : public Classl {

Class2 () { cout << "Class2 default ctor called.\n"; }
Class” (char c¢) {

cout << "Class2 ctor(char '"" << ¢c << "'") called.\n";
}
¥

class Class3 : public ClassZ?2 {

Class3() : Class2('"x") {
cout << "Class3 default ctor is called.\n";

b

Inheritance and Construction

Class?2 objd4('z");
>> (Classl default ctor i1s called.
>> Class? ctor(char 'z') i1s called.

class Classl {

Classl () { cout << "Classl default ctor called.\n"; }
Classl (int 1) {

cout << "Classl ctor(int " << 1 << ") called.\n";
}
s

class Class?2 : public Classl {

Class2 () { cout << "Class2 default ctor called.\n"; }
Class” (char c¢) {

cout << "Class2 ctor(char '"" << ¢c << "'") called.\n";
}
¥

class Class3 : public ClassZ?2 {

Class3() : Class2('"x") {
cout << "Class3 default ctor is called.\n";

b

Inheritance and Construction

Class3 objb;

>> Classl default ctor is called.
>> Class”? ctor(char 'x') is called.
>> Class3 default ctor is called.

class Classl {

Classl () { cout << "Classl default ctor called.\n"; }
Classl (int 1) {

cout << "Classl ctor(int " << 1 << ") called.\n";
}
b

class Class? : public Classl {

Class2 () { cout << "Class2?2 default ctor called.\n"; }
Class”? (char c) {

cout << "Class?2 ctor(char '" << ¢ << "'") called.\n";
}
b

class Class3 : public Class2 {

Class3() : Class2('"x") {
cout << "Class3 default ctor 1is called.\n";

Inheritance and Destruction

Base Class

Y

“Top-down”

Class Derived from Base Class destruction

Bjarne Stroustrup draws his class

diagrams with derived classes above
and base classes below. Hence the
v name “top-down” destruction.

Class Derived from Derived Class

Inheritance and Destruction

e Demonhttp://cs.ucsb.edu/~victor/ta/cs32/disc4/code/destr.cpp
class Classl {

~Classl () { cout << "Classl destructor called.\n"; }
I

class Class?Z2 : public Classl {

~Class2 () { cout << "Class?2 destructor called.\n"; }
i

class Class3 : public Class2 {

~Class3 () { cout << "Class3 destructor called.\n"; }
I

http://cs.ucsb.edu/~victor/ta/cs32/disc4/code/destr.cpp

Inheritance and Destruction

Classl *pob] = new Classl; delete pobj;
>> (Classl destructor called.

class Classl {

~Classl () { cout << "Classl destructor called.\n"; }
I

class Class?Z2 : public Classl {

~Class?2 () { cout << "Class?2 destructor called.\n"; }
I

class Class3 : public Class2 {

~Class3 () { cout << "Class3 destructor called.\n"; }
I

Inheritance and Destruction

Class? *pobj = new Class?2; delete pobj;
>> (Class” destructor called.
>> (Classl destructor called.

class Classl {

~Classl () { cout << "Classl destructor called.\n"; }
I

class Class2?2 : public Classl {

~Class? () { cout << "Class2?2 destructor called.\n"; }
I

class Class3 : public Class2 {

~Class3() { cout << "Class3 destructor called.\n"; }
I

Inheritance and Destruction

Class3 *pob] = new Class3; delete pobj;
>> Class3 destructor called.
>> (Class” destructor called.
>> Classl destructor called.

class Classl {

~Classl () { cout << "Classl destructor called.\n"; }
Y

class Class? : public Classl {

~Class?2 () { cout << "Class2 destructor called.\n"; }
}s

class Class3 : public ClassZ {

~Class3 () { cout << "Class3 destructor called.\n"; }
b

Inheritance and Destruction

Classl *pobj] = new Class3; delete pobj;
>> Classl destructor called.

class Classl {

~Classl () { cout << "Classl destructor called.\n"; }
I

class Class?Z2 : public Classl {

~Class?2 () { cout << "Class?2 destructor called.\n"; }
I

class Class3 : public Class2 {

~Class3 () { cout << "Class3 destructor called.\n"; }
I

Intermezzo: Initialization Lists vs. Assignment

Demo http://cs.ucsb.edu/~victor/ta/cs32/disc4/code/initlist.cpp

» Before executing ctor's body, object's fields get initialized

class Value {

private:
int state;
public:
Value () : state(0) { .. }
Value (int 1) : state(i) { .. }
state (other.state) { .. }

Value (const Value& other)
Value& operator=(const Value &other) { .. }

s

class MyClass {
private:
Value val;

public:
MyClass (const Value &v) { wval = v; }

MyClass (const Value &v) : val(wv) { }

I

http://cs.ucsb.edu/~victor/ta/cs32/disc4/code/initlist.cpp

Intermezzo: Initialization Lists vs. Assignment

Value v (123);
>> Value's ctor(int 123) 1is called.

MyClass objl (v);

>> Value's default ctor is called.

>> Entered MyClass ctor (assignment version).
>> Value's op=(Value{state=123}) is called.

MyClass obj2 (v, 0);
>> Value's ctor(int 123) is called.
>> Entered MyClass ctor (initialization 1ist version).

class MyClass {
private:
Value wval;
public:
MyClass (const Value &v) { cout ..; val = v; }
MyClass (const Value &v) : wval(v) { cout ..; }

b

Inheritance of Overloads (Lack of)

* Method overloading does not work across scopes

class Base {
public:
int doit (int n);

}

class Derived {
public:
int doit (double d); // overloading doit

}

Derived obj;
obj.doit (1l); // Derived::doit (double) is called

Base *pobj = &obj;
pobj->doit (1); // Base::doit (int) 1is called

Inheritance of Overloads (Lack of)
* We can explicitly “invite” overloads to the new scope

class Base {
public:
int doit(int n);

Y

class Derived : public Base {

public:
using BRase::doit; // import all overloads of doit

int doit (double d); // overloading doit
I

Derived obj;
obj.doit (1); // Derived::doit (int) is called

Base *pobj = &obj;
pobj->doit (1); // Derived::doit (int) 1is called

e Demo http://cs.ucsb.edu/~victor/ta/cs32/disc4/code/overloading.cpp

http://cs.ucsb.edu/~victor/ta/cs32/disc4/code/overloading.cpp

Inheritance of Constructors (Lack of)

e Constructors are also not inherited

 \WWe can “invite” constructors from the base
like it has been done with overloads

class BRase {
public:
Base (int n) { }

b

class Derived : public Base {
public:
using Base::Base; // imports ctor (int n)

b

Slicing

Objects of derived classes can be treated as objects of base
classes if used through pointers or references

class HighSchoolStudent { .. }
class UniversityStudent : public HighSchoolStudent { .. };

HighSchoolStudent *pstud = new UniversityStudent(...);

HighSchoolStudent *pstud

N UniversityStudent
_full name (4 bytes)
_dob (4 bytes)
_ssn (4 bytes)
_perm (4 bytes)
_major (4 bytes)
_advisor id (4 bytes)

Slicing

* Objects of derived classes can be treated as objects of base
classes if used through pointers or references

class HighSchoolStudent { .. }
class UniversityStudent : public HighSchoolStudent { .. };

HighSchoolStudent &stud = univ student;

HighSchoolStudent &stud
> UniversityStudent

_full name (4 bytes)
_dob (4 bytes)
_ssn (4 bytes)
_perm (4 bytes)
_major (4 bytes)
_advisor id (4 bytes)

Slicing
* Not using pointers or references, assignment results in slicing

class HighSchoolStudent { .. }
class UniversityStudent : public HighSchoolStudent { .. };

UniversityStudent ustud;
HighSchoolStudent hstudl (ustud); // ustud gets sliced
HighSchoolStudent hstud?2 = ustud; // ustud gets sliced

HighSchoolStudent hstud1 (or hstud2)

HighSchoolStudent UniversityStudent
full name _full name (4 bytes)
“dob - _dob (4 bytes)
ssn _ssn (4 bytes)
B _perm (4 bytes)
_major (4 bytes)
(4)

_advisor_id

Either copy ctor or assignment operator are used to
initialize fields of hstud1 with field values from ustud.

Polymorphism and Virtual Functions

* |[nheritance prevents code duplication
 Common functionality is defined in the base class
* Then, itis inherited by derived classes

* What if an inherited method needs to be
redefined (“overridden”) in a derived class?

class Classl { void doit () { } };

class Class2?2 : public Classl { .. };

class Class3 : public ClassZ?Z {
// void doit () has been inherited from Classl
// want to override void doit () for Class3

b

Polymorphism and Virtual Functions

* Why not to simply define method doit() in Class3?

class Classl {
volid doit () { cout << “hello from Classl”; }
}

class Class?2 : public Classl { .. };

class Class3 : public ClassZ2 {
volid doit () { cout << “hello from Class3”; }

s

Classl objl; objl.doit (),
>> hello from Classl
Class?2 obj2; obj2.doit();
>> hello from Classl
Class3 obj3; obj3.doit();
>> hello from Class3

Classl *pobj = &obj3; pobj->doit();
>> hello from Classl

e Demo http://cs.ucsb.edu/~victor/ta/cs32/disc4/code/polymotiv.cpp

http://cs.ucsb.edu/~victor/ta/cs32/disc4/code/polymotiv.cpp

Polymorphism and Virtual Functions

 WWe may want to have a pointer/reference of base type
pointing to an object of a derived type

class Shape {
public:
void draw () {
/* do nothing; do not know what to draw */
}
} 7

class Triangle : public Shape { ..draw() 1is redefined.. };
class Sphere : public Shape { ..draw() is redefined.. };
class Rect : public Shape { ..draw() 1is redefined.. };

vold drawShape (Shape *pshape) {
// pshape can point to any shape (Triangle,

pshape->draw () ;

Sphere, Rect)

}

drawShape (&my triangle obj); // should draw a triangle
drawShape (&my sphere obj); // should draw a sphere

* “Polymorphism”. pshape can take many forms (sphere, triangle, ...)

Polymorphism and Virtual Functions

e |In C++, polymorphism is implemented through virtual functions (aka virtual
methods)

class Shape {
public:
virtual void draw() { }

b

class Triangle : public Shape {
void draw() { .. draw triangle .. }

b

class Sphere : public Shape {
void draw() { .. draw sphere .. }

}i
Triangle triangle; Sphere sphere;

Shape shapel (triangle); shapel.draw();
>> Nothing is drawn (Shape's draw() 1is called)

Shape &shape?2 = sphere; shapeZ.draw();
>> Circle 1s drawn (Circle's draw() is called)

Shape *pshape3 = ▵ pshape3->draw();
>> Triangle 1s drawn (Triangle's draw() is called)

e Demo http://cs.ucsb.edu/~victor/ta/cs32/disc4/code/shapes.cpp

http://cs.ucsb.edu/~victor/ta/cs32/disc4/code/shapes.cpp

Polymorphism and Virtual Functions

Which regular function is called depends on the declared type of the
variable

Base obj (my derived obj); // my derived obj is sliced
obj.regular method(); // Base'es method is called

Which virtual function is called depends on the actual type of the object
a pointer/reference points to

Base *pobj] = new Derived();
pobj->virtual method(); // Derived's method is called
// (it 1is overridden in Derived)

If a function is declared virtual, it is virtual in all derived classes

In C++11, we can mark overridden virtual functions with override

class Shape { public: wvirtual void draw() { } };

class Triangle : public Shape {
// the reader sees that draw has been decl'ed virtual
volid draw () override { .. draw triangle .. }

b

Virtual Functions: Calling Base

 Virtual methods can call other methods
 In particular, they can call their base implementations

// http://cs.ucsb.edu/~victor/ta/cs32/disc4d/code/virtbase.cpp

class Base {
public:
virtual int doit () { cout << “Base::doit ()\n"; }

b

class Derived : public Base {
public:
int doit () {
cout << "Entered Derived::doit ()\n";
Base::doit () ;
cout << "Leaving Derived::doit ()\n";
}
}:

Derived derived;
Base *pbase = &derived;
pbase->doit () ;

>> Entered Derived::doit ()
>> Base::doit ()
>> Leaving Derived::doit ()

http://cs.ucsb.edu/~victor/ta/cs32/disc4/code/virtbase.cpp

Virtual Destructor

 Destructors are methods

* A non non-virtual destructor, like any other method,
will not be called through a pointer/reference to
a base class

class Base {
public:
~Base () { cout << "Base::~Base ()\n"; }

'

class Derived : public Base {

public:

~Derived () { cout << "Derived::~Derived()\n"; }
¥
Base *pobj] = new Derived();

delete pobj; // only Base::~Base () is called

Virtual Destructor

e If a chain of destructors should be called (like on the slide
with top-down destruction) when operating on
pointers/references, destructor needs to be virtual

// http://cs.ucsb.edu/~victor/ta/cs32/disc4/code/virtdest.cpp

class Base {

public:
virtual ~Base() { cout << "Base::~Base()\n"; }
i
class Derived : public Base {
public:
~Derived () { cout << "Derived::~Derived()\n"; }
I
Base *pobj = new Derived():;
delete pobj;
>> Derived: :~Derived ()

>> Base: :~Base ()

http://cs.ucsb.edu/~victor/ta/cs32/disc4/code/virtdest.cpp

Bypass of Dynamic Dispatch

 Calling a virtual method through a pointer/reference will by done by
the means of dynamic dispatch — which implementation to call will
be chosen automatically based on the pointed object

 If needed, static dispatch can be enforced by the means of explicit
qualification, thereby, allowing to call any implementation of a
(virtual) method

class Base {
public:

virtual void doit () { cout << "Base::doit ()\n"; }
Y

class Derived : public Base {
public:

void doit () { cout << "Derived::doit ()\n"; }
by

Derived obj;

Base *pobj = &obj;

pobj->doit (); // calling Derived::doit () (dynamic dispatch)
pobj->Base::doit(); // calling Base::doit () (static dispatch)

Cost of Polymorphism

* Objects of a class that has virtual functions contain a
pointer to the table of virtual functions (aka vtbl) — this
IS how dynamic dispatch knowns which implementation
to call

Object of class Circle

Class Shape Pointer to vtbl
. int Xpos;
int xXpos; int ypos;
Int ypos; int radius;

virtual void draw() ;
virtual void resize () ;

volid erase () ; vtbl of class Shape
draw — Shape: :draw ()
resize — Shape::resize|()

Class Circle : public Shape

int radius; .
vtbl of class Circle <

draw — Circle: :draw()
resize — Circle::resize ()

(virtual) wvoid draw/() ;
(virtual) wvoilid resize();

Calling Virtual Functions from Ctors/Dtors

 Dynamic dispatch does not work as usually inside
constructors/destructors

* |nstead of the implementation from the "most
derived” class, the current or the closest base
iImplementation is called

* To avoid problems, you may want to refrain from
calling virtual functions from ctors/dtors

~ The End ~

(To be continued...)

